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NON-EQUILIBRIUM GHOSTS∗
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We discuss how to introduce Faddeev–Popov ghosts to the Keldysh–
Schwinger formalism describing equilibrium and non-equilibrium statisti-
cal systems of quantum fields such as the quark–gluon plasma which is
considered.
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1. Introduction

In field theories obeying a gauge symmetry, the number of fields exceeds
the number of physical degrees of freedom. To get rid of unphysical degrees
of freedom in a manifestly Lorentz covariant way, one introduces the fic-
titious fields known as Faddeev–Popov ghosts which play a crucial role in
non-Abelian field theories where unphysical degrees of freedom interact with
physical ones. In vacuum field theory — we use the term to contrast it with
the statistical field theory — the propagator of free ghosts has a simple form
of massless scalar field [1] but in the Keldysh–Schwniger formalism [2, 3],
which is applicable to equilibrium and non-equilibrium systems, the situa-
tion is more complicated. The Green’s functions of the Keldysh–Schwinger
formalism are of much richer structures as they carry information not only
about microscopic degrees of freedom of the system but about its statistical
features as well. And it is unclear how to proceed with ghosts — whether
these unphysical particles are constituents of the system of gauge fields or
should be merely included in scattering matrix elements.
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The complete analysis of the problem is presented in [4]. Here, only a
brief summary is given. We consider a system of quarks and gluons which
is, in general, out of equilibrium but the system is assumed to be transla-
tionally invariant. It is thus homogeneous (in coordinate space) but the mo-
mentum distribution is arbitrary. In particular, the system can be strongly
anisotropic. The translational invariance greatly simplifies our analysis, as
each two-point function depends on its two arguments only through their
difference.

2. Keldysh–Schwinger formalism

Since the Yang–Mills fields are of our special interest, the Keldysh–
Schwinger formalism is presented in terms of Green’s functions of the gauge
vector field Aaµ(x). The main object of the approach is the contour-ordered
Green’s function defined as

iDabµν(x, y)
def
=

Tr
[
ρ(t0) T̃Aaµ(x)Abν(y)

]
Tr[ρ(t0)]

, (1)

where the trace is understood as a summation over a complete set of states
of the system Tr[. . .] =

∑
α〈α| . . . |α〉, ρ(t0) is a density operator at time t0.

The time arguments x0 and y0 are complex with an infinitesimal positive or
negative imaginary part which locates them on the upper or lower branch of
the contour shown in Fig. 1. The real time t0 is smaller than the real parts of
x0 and y0, and the real time tmax is greater than the real parts of x0 and y0.
The times t0 and tmax are usually shifted to −∞ and +∞, respectively. The
time ordering operation T̃ is performed along the contour.

Im t 
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Fig. 1. The time contour of the Keldysh–Schwinger formalism.

The contour Green’s function carries information about microscopic in-
teractions in the system under consideration and its statistical properties.
It involves four Green’s functions with real time arguments Dc,Da,D>, and
D<. The function Dc describes a particle disturbance propagating forward
in time, and an antiparticle disturbance propagating backward in time. The



Non-equilibrium Ghosts 507

meaning of Da is analogous but particles are propagated backward in time
and antiparticles forward. The functions D≶ play a role of the phase-space
densities of (quasi-)particles, so they can be treated as quantum analogs of
the classical distribution functions.

The free Green’s functions D can be found solving the equations of mo-
tion and in the Feynman gauge the functions read(
Dab
µν

)>
(p) =

iπ

Ep
gµνδ

ab
[
δ(p0 − Ep)

(
ng(p) + 1

)
+ δ(p0 + Ep)ng(−p)

]
, (2)(

Dab
µν

)<
(p) =

iπ

Ep
gµνδ

ab
[
δ(p0 − Ep)ng(p) + δ(p0 + Ep)

(
ng(−p)+1

)]
, (3)(

Dab
µν

)ca

(p) =∓gµνδab
[ 1

p2 ± i0+

∓ iπ
Ep

(
δ(p0 − Ep)ng(p) + δ(p0 + Ep)ng(−p)

)]
, (4)

where ng(p) is a distribution function of gluons which are assumed to be
unpolarized with respect to spin and color degrees of freedom.

The free Green’s functions of a fermion field can be derived in a similar
way by solving the appropriate equations of motion, see e.g. [5]. One could
also find the Green’s functions of ghost fields solving the equations of motion
but it is fairly unclear what is the distribution function of ghosts. The
Slavnov–Taylor identity, which is derived in the next section, allows one to
resolve the ambiguity.

3. Generating functional and Slavnov–Taylor identities

Following [3], we construct the generating functional of the Keldysh–
Schwinger formalism in two steps. In the first one, we write

W0 [J, χ, χ∗] = N0

∫
A(−∞+i0+,x)=A′(x)

A(−∞−i0+,x)=A′′(x)

DA(x)

∫
c(−∞+i0+,x)=c′(x)

c(−∞−i0+,x)=c′′(x)

Dc(x)

×
∫

c∗(−∞+i0+,x)=c∗′(x)
c∗(−∞−i0+,x)=c∗′′(x)

Dc∗(x) exp

i∫
C

d4xLeff(x)

 , (5)

where the time integral is along the contour and the effective Lagrangian is

Leff = −1

4
Fµνa F aµν + ψ̄(iγµD

µ −m)ψ − 1

2α

(
∂µAaµ

)2
−c∗a

(
∂µ∂µδ

ab − g∂µfabcAcµ
)
cb + JµaA

a
µ + χ∗aca + χac

∗
a . (6)
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The first two terms constitute the fundamental QCD Lagrangian, the third
one fixes the general covariant gauge and the subsequent one with c∗ and c
being the ghost Grassmann fields allows one to properly count the volume
of a gauge orbit [1]. The remaining three terms describe interactions of the
fields A, c and c∗ with external sources J, χ∗ and χ. The sources of ghosts
are Grassmannian. The terms of interaction of quark fields with external
sources are missing in Eq. (6). Since we are mostly interested in the gauge
fields, the quarks are ignored all together from now on.

The generating functional of Keldysh–Schwinger formalism is obtained
from the functional (5) by integrating it over the boundary fields A′(x),
A′′(x), c′(x), c′′(x), c∗′(x), c∗′′(x) weighted with the density matrix ρ which
describes the system of fields at t = −∞. The matrix is not really physical
because of the unphysical degrees of freedom of gauge fields and of the ghosts
but our results do not depend on a form of the density matrix. The complete
generating functional equals

W [J, χ, χ∗] = N

∫
DA′(mbx)DA′′(x)Dc′(x)Dc′′(x)Dc∗′(x)Dc∗′′(x)

×ρ
[
A′(x), c′(x), c∗′(x)

∣∣A′′(x), c′′(x), c∗′′(x)
]
W0 [J, χ, χ∗] .

(7)

The constant N is chosen in such a way that W [J = 0, χ = 0, χ∗ = 0] = 1.
Contrary to the vacuum field theory, the generating functional of the

Keldysh–Schwinger formalism cannot be expressed in a closed explicit form
even for a free theory because of the unspecified density operator. Nev-
ertheless, the functional (7) provides various relations among the Green’s
functions, in particular, the Slavnov–Taylor identities [6].

The general Slavnov–Taylor identity [6] results from the invariance of the
generating functional with respect to the infinitesimal gauge transformations
Aaµ → Aaµ + fabcωbAcµ − 1

g∂µω
a, where |ω| � 1. We assume that the gauge

transformation does not work at t = −∞, that is ω(t = −∞,x) = 0, and
consequently, the density matrix ρ remains unchanged. Requiring invariance
of the generating functional with respect to the gauge transformation, we
get the general Slavnov–Taylor identity{

i∂µ(z)
δ

δJµd (z)
−
∫
C

d4xJµa (x)

(
∂(x)
µ δab + igfabc

δ

δJµc (x)

)

×M−1
bd

[
1

i

δ

δJ

∣∣∣x, z]}W [J, χ∗, χ] = 0 , (8)

which holds in the Feynman gauge; M−1 is essentially the ghost Green’s
function. Differentiating the general relation (8) with respect to Jνe (y) and
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putting χ = χ∗ = J = 0, we obtain

∂µ(z)D
ab
µν(z, y) = ∂(y)

ν ∆ab(y, z) , (9)

which relates to each other the contour Green’s functions of interacting glu-
ons and free ghosts. Locating the time arguments y0 and z0 on the upper
or lower branch of the contour shown in Fig. 1, we get the relations for
the Green’s functions of real arguments. Since the system under study is
translationally invariant, the Fourier transformed identity (9) gets

−pµDabµν(p) = pν∆ab(−p) , (10)

which relates the longitudinal part of the gluon Green’s function to the free
ghost function. Equation (10) also expresses the well-known fact that the
longitudinal part of the gluon Green’s function is not modified by interaction
and consequently the polarization tensor is purely transversal.

With the explicit expressions of the gluon functions (2, 3, 4), the rela-
tion (10) provides the Green’s functions of free ghosts

∆>
ab(p) = −δab iπ

Ep

[
δ(Ep − p0)

(
ng(p) + 1

)
+ δ(Ep + p0)ng(−p)

]
∆<
ab(p) = −δab iπ

Ep

[
δ(Ep − p0)ng(p) + δ(Ep + p0)

(
ng(−p) + 1

)]
,

∆
ca
ab(p) = ±δab

[ 1

p2 ± i0+
∓ iπ

Ep

(
δ(p0 − Ep)ng(p) + δ(p0 + Ep)ng(−p)

)]
.

As seen, the gluon distribution function ng(p), which describes the physical
gluons, enters the Green’s functions of unphysical ghosts.

4. Gluon polarization tensor

As an application of the Green’s functions of the free ghosts, we discuss
here the retarded polarization tensor of a quark–gluon plasma. Our compu-
tation is performed within the hard loop approximation which is discussed
in the context of anisotropic systems in [7]. The retarded polarization tensor
is an important characteristic of a plasma system, as it carries information
about its chromodynamic properties like collective excitations or screening
lengths.

The polarization tensor of QCD is obtained by summing up four con-
tributions shown in Fig. 2 where the curly, plain and doted lines denote,
respectively, gluon, quark and ghost fields. After subtracting the vacuum
effect, one gets

Πµν
ab (k) = g2δab

∫
d3p

(2π)3

f(p)

Ep

gµν(k · p)2 − (kµpν + pµkν)(k · p) + k2pµpν

(k · p+ i0+)2
,
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where f(p) ≡ nq(p) + n̄q(p) + 2Ncng(p). As seen, the tensor is sym-
metric with respect to Lorentz indices Πµν

ab (k) = Πνµ
ab (k) and transverse

kµΠ
µν
ab (k) = 0, as required by the gauge invariance.

(a) (b) (c) (d)

Fig. 2. The one-loop contributions to the gluon polarization tensor.

5. Conclusions

The transversality of the computed polarization tensor, which appears
automatically, clearly shows that the derived Green’s functions of ghosts
work properly. This opens a possibility to perform other real-time calcula-
tions in the Feynman gauge which are usually much simpler than those in
physical gauges like the Coulomb one.
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