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In holographic models of large-N gauge theories, the pure-glue ax-
ial sector is described in terms of a massless pseudoscalar field, dual to
the topological density operator TrFµν F̃µν . I will outline how the duality
can be used to compute observables such as axial glueball masses, as well
as correlation functions and transport coefficients in the axial sector. I
will consider 5-dimensional phenomenological holographic models for pure
Yang–Mills (YM) theory, and focus on the particular set of CP-odd observ-
ables connected to the topological density operator. This provides a simple
case study of how the holographic correspondence in association with other
techniques can provide quantitative results and (possibly) predictions.
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1. The topological charge operator in the Yang–Mills theory
and its gravity dual description

In the large-N YM theory, the action including the θ-term is most con-
veniently written as

LYM = N

[
1

4λ
TrFµνF

µν +
θ

32π2N
TrFµνF̃

µν

]
, F̃µν =

1

2
εµνρσFρσ ,

(1)
where λ = g2YMN is ‘t Hooft coupling, which one keeps finite as N →∞, and
θ ∈ [0, 2π]. The fact that the θ-term is suppressed by 1/N with respect to
the gauge kinetic term indicates that, in the large-N limit, the contribution
of topological charge on glue dynamics can be neglected [1].

In the gauge/gravity duality (see [2] for a review), a large-N gauge
field theory (boundary theory) is mapped to a gravitational theory in a
higher-dimensional curved space-time (bulk theory). For a theory which is
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conformal in the UV, the space-time is asymptotically AdS5, with metric
ds2 → (`2/r2)

(
dr2 + dxµdx

µ
)
as r → 0. The field theory can be thought of

as living on the conformal boundary of AdS, at r = 0. The non-compact co-
ordinate r which parametrizes the distance from the boundary corresponds
to the energy scale in the field theory.

The main ingredient for concrete calculations is the field/operator cor-
respondence: to each boundary theory gauge-invariant operator O(x), there
corresponds a bulk field Φ(x, r). The boundary value Φ(x, 0) represents a
source for O(x) in the field theory. According to this prescription, in order
to describe the Yang–Mills operators with lower dimension, we need two
bulk spin-0 fields: a scalar field λ(x, r) (the dilaton) dual to the Yang–Mills
kinetic operator TrF 2, and representing the running Yang–Mills coupling;
a pseudoscalar field a(x, r) (the axion) dual to TrFF̃ , whose boundary value
is the UV θ-angle. Beside these fields, the dynamical 5-dimensional metric
is dual to the gauge theory stress tensor.

Here, we follow a bottom-up phenomenological approach to the holo-
graphic description of pure YM theory [3]: we keep only the fields discussed
above, and ignore other operators of higher dimension.

Since in the large-N limit the topological term gives a negligible contri-
bution to the glue dynamics, we will assume a five-dimensional action of the
form

Sbulk = N2Sbkg [ gµν , λ ] +

∫
d5x
√
−gZ(λ)(∂a)

2

2
. (2)

Here, Sbkg contains the leading-order dilaton action and Einstein–Hilbert
action which determine the background geometry. We will generically con-
sider five-dimensional gravity solutions which are confining [3] and have a
deconfinement transition at finite temperature [4]. The second term in (2)
encodes the dynamics of the axion, which will be treated as a probe, i.e. it
does not affect the metric-dilaton background. Z(λ) is a function that de-
scribes how the axion couples to the background, and has to be determined
phenomenologically. Since the θ-term has an exact shift symmetry in the
large-N limit, in which instanton effects are negligible, this shift symmetry
should be reproduced in the bulk action for a, which therefore contains no
potential term.

The Poincaré invariant vacuum will be described by the background
solution

ds2 = b2(r)
(
dr2 + ηµνdx

µdxν
)
, λ = λ(r) . (3)

A non-trivial scale factor b(r) signals the breaking of conformal invari-
ance away from the UV. Once the functions b(r) and λ(r) are determined
from Sbkg, the axion linear field equations are derived from (2)

∂r

(
A(r)∂ra(r, x)

)
+A(r)∂µ∂µa(r, x) = 0 , A(r) ≡ b3(r)Z(λ(r)) . (4)



AdS/CFT and the Axial Sector of Large-N Yang–Mills Theory 527

2. Axial sector observables

There are several gauge theory observables connected to the CP-odd
operator TrFF̃ , that one can map to the gravity dual picture. Below, we
discuss some of these observables and review how they are calculated using
the bulk axion.

Vacuum topological susceptibility

In the large-N Yang–Mills, the vacuum energy is composed by a lead-
ing O(N2) θ-independent term, and by a subleading θ-dependent contribu-
tion [1]

E(λ, θ) ≈ N2E0(λ)−
χtop

2
θ2 , (5)

where χtop is a constant called vacuum topological susceptibility. In the
gravity dual, the vacuum energy is computed by the action (2) evaluated on
the solution of the field equations. The relevant θ-dependent contribution
comes from the axion field, for which the homogeneous solution of (4) reads

a(r) = a0 + a1

r∫
0

dr′

A(r′)
. (6)

As discussed in the previous section, the boundary value a0 is identified with
the source of TrFF̃ , i.e. a0 = θ , up to an overall coefficient which we choose
to set to unity. The coefficient a1 is fixed by a regularity condition at the
infrared end of space, r → rIR, where we require a(r) → 0. Evaluating the
axion action in (2) on this solution, we find a θ-dependence as in (5) with

χtop =

 rIR∫
0

dr′

A(r′)

−1 . (7)

Axial glueball spectrum

The spectrum of physical gauge-invariant states in the field theory is
mapped in the gravity dual to the spectrum of normalizable modes around
a background solution. In the large-N limit, we have two decoupled towers
of spin-0 excitations corresponding to dimension-four operators: 0++ glue-
balls, which are created by the operator TrF 2, and 0−+ glueballs created
by TrFF̃ . According to the AdS/CFT prescription, the latter are in one-to-
one correspondence with the tower of normalizable eigenmodes of the axion
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radial equation, obtained from equation (4) when one imposes a harmonic
space-time dependence

−a′′(r)−A
′(r)

A(r)
a′(r) = m2

na(r) , a(x, r) = a(r)eikµx
µ
, kµkµ = −m2

n .

(8)
In holographic duals of confining gauge theories, the above equation gives
rise to a discrete and gaped spectrum for a very general choice of Z(λ).

Thermal topological susceptibility

At finite temperature, gravity duals of confining gauge theories display
a first order deconfinement transition to a black hole geometry, of the form

ds2 = b2(r)

[
dr2

f(r)
− f(r)dt2 + dxidxi

]
, f(rh) = 0 , (9)

where rh is the black hole horizon. Above the critical temperature Tc, the
axion field equation is modified by the presence of the black hole. In the
homogeneous case, we have

∂r

(
A(r)f(r)∂ra(r)

)
= 0 ⇒ a(r) = a0 + a1

r∫
0

dr′

f(r′)A(r′)
. (10)

In this case, the only solutions which are regular at the black hole horizon rh
have a1 = 0. The bulk axion action (the second term in (2)) evaluated on
these solutions vanishes, leading to the result that the topological suscep-
tibility is identically zero in the deconfined phase [4]. This is in agreement
with lattice results [5].

Chern–Simons diffusion coefficient

In the deconfined phase, the relaxation to equilibrium of the topologi-
cal charge density TrFF̃ is governed by a transport coefficient, the Chern–
Simons diffusion constant ΓCS. This can be defined from the retarded two-
point function of TrFF̃ as

ΓCS(T ) = lim
ω→0

2T

ω
Im 〈q(ω)q(−ω)〉ret , q(ω) =

1

32π2

∫
d3xdt eiωtTrFF̃ ,

(11)
and it plays an important role in the chiral magnetic effect [6]. It can be
computed holographically by considering axion fluctuations in the decon-
fined phase, obeying infalling boundary conditions at the black hole horizon.
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The result is [7]

ΓCS =
sT

N2

Z(λ(rh))

2π
, (12)

where s is the entropy density, rh is the BH horizon position, and Z(λ) is
the axion wavefunction normalization appearing in (2).

Like similar real-time quantities, ΓCS is very hard to obtain using lattice
techniques.

3. Explicit model and comparison with data

To explicitly compute the observables in the holographic theory, we first
need to specify a metric-dilaton background, and to chose a function Z(λ).

We take as a background the model discussed in [8], which is confin-
ing, has realistic 0++ and 2++ glueball towers with linear Regge behaviour,
mimics UV asymptotic freedom for the ‘t Hooft coupling, and at finite T
reproduces the equation of state of pure Yang–Mills theory calculated on
the lattice.

We choose the function Z(λ) that governs the axion dynamics accord-
ing to the following criteria: (1) it should give a finite vacuum topological
susceptibility. This constrains the behaviour of Z(λ) as λ→ 0; (2) the 0−+

glueball tower should have the same asymptotic linear slope as the 0++ and
2++ towers (glueball universality). This requires Z(λ) ∼ λ4 as λ → ∞.
A simple parametrization that satisfies both criteria is

Z(λ) = Z0

(
1 + c1λ+ c4λ

4
)
. (13)

Here, Z0, c1 and c4 are phenomenological parameters that can be fixed by
matching with lattice calculations some of the observables discussed in the
previous section.

For any fixed value of (c1, c4), Z0 can be fixed using (7) to match the
lattice value of the topological susceptibility, χlat = (191 MeV)4 [5, 9].

The known lattice values [10] of the two lowest 0−+ glueball masses (in
units of the 0++ ground state) fix a combination of c1 and c4. Taking c1 = 0,
c4 = 0.26 gives a good fit of these values, as shown in the table below [8].

5d model Lattice hep-lat/9901004

m0−+/m0++ 1.50 1.50(4)
m0∗−+/m0++ 2.10 2.11(6)
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These observables do not lift the degeneracy between parameters: as
shown in [7], there is a one-dimensional curve in the space (c1, c4) that fits
equally well the first two glueball masses. Also, higher glueball states are
essentially insensitive to the point chosen on this curve.

On the other hand, the specific values of c1, c4 do matter for the Chern–
Simons diffusion coefficient ΓCS as shown in Fig. 1, taken from [7]. According
to the holographic model, the magnitude of ΓCS can drastically increase close
to the transition temperature if the values of c1, c4 are large enough, and
this could possibly lead to an observable chiral magnetic effect. A quantity
which, unlike ΓCS, can be computed on the lattice and is sensitive to the
values (c1, c4) is the full Euclidean two-point correlation function of TrFF̃ .
Comparing a direct calculation of this object on the lattice to the analog
result obtained using the holographic model, would potentially allow to fix
Z(λ) and to predict ΓCS.

1 2 3 4 5 6
T�Tc0

2

4

6

8

GCS�HZ0�2 ΠL

Is T�Nc
2M

Fig. 1. Holographic determination of ΓCS/(sT/N
2
c ) as a function of T/Tc, normal-

ized to the T → ∞ value Z0/2π, for different choices of the parameters (c1, c4) in
(13). From the bottom (red) curve to the top (blue) curve, (c1, c4) = (0, 0.26), (0.5,
0.87), (1, 2.2), (5, 24), (10, 75), (20, 230), (40, 600).
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