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WHY f0(500) MUST BE NARROWER?∗
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Proof of correctness of the results obtained in the recent analysis of the
ππ interactions using new dispersion relations with imposed crossing sym-
metry condition is presented. The proof concerns position of the f0(500)
(former σ) pole and is based on a purely mathematical relations and prop-
erties of analytic functions. It is shown that the mere analysis of amplitudes
expressed by the trigonometric functions and their derivatives clearly define
the area in which mass of the σ and its width must be located. These results
require also a knowledge of integrals of amplitudes over the physical region.
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1. Introduction

The recent precise determination of the σ parameters was done in analy-
sis of the ππ interactions using new dispersion relations — so-called GKPY
equations, with imposed crossing symmetry condition [1, 2]. Although these
results have changed parameters of that meson in the Particle Data Ta-
bles [3] and are widely accepted, one can still find analyses which use old
amplitudes with significantly heavier and wider σ resonance. Therefore, it is
worth to construct a new, simple and convincing proof of the results found
in the dispersive analysis of the data.

Before the presentation of that proof let us, however, first respond to
some frequently asked questions and raised doubts about the correctness of
the dispersive analysis and results presented in [1] and [2].

One of these questions concerns uniqueness of those results. They have
been obtained without any assumptions about the energy dependence of the
ππ amplitudes. In contrast to this approach, another but similar analysis
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of the Roy equations [4] has been performed using two assumptions for the
S0-wave amplitude i.e. its values at 800 MeV and at the ππ threshold. Due
to these two boundary conditions, it was possible to find unique analytical
solution of the Roy equations below 800 MeV in accordance with the method
described in [5]. The position of the σ pole obtained in [4] differs by less
then one standard deviation from that received in [1, 2]. Therefore, one can
be sure that this solution is also unique.

Another question concerns parameterization of the amplitudes used in
[1, 2]. Although they were purely mathematical, i.e. without any physical
bias, one can easily prove that, independently on the used parameteriza-
tions, the σ becomes lighter and narrower when the amplitudes are fitted
to dispersion relations with imposed crossing symmetry. For example, in [6]
was shown that using completely different parameterization of the so-called
“old” amplitudes [7] supplemented by simple threshold expansion and fitted
to experimental data and to the GKPY equations, one obtains the “new”
amplitudes which give almost the same position of the σ pole as in [1, 2]. Its
movement from that given by “old” amplitudes to the “new” one is presented
in figure 1.

Fig. 1. Left panel: shift of the σ pole after fitting to the GKPY equations. Cross
on the bottom denotes its position for the “old” amplitude, while cross indicated by
the arrow its position for the “new” one. The big and smaller rectangle show area
allowed by the Particle Data Tables in 2010 and 2012 respectively. Black points are
positions of the poles listed in the Particle Data Tables published in 2010. Right
panel: energy dependence of the phase shifts corresponding to the “new” and “old”
amplitudes.

One of the objections to the Roy-like equations is that they can be ap-
plied only to the ππ → ππ scattering so they may ignore information from
other coupled channels. Looking, however, at the full form of the e.g. GKPY
equations (1), one sees that all other channels appear in the right-hand side
of that equation and are fitted indirectly. Moreover, due to unitarity, below
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about 1100 MeV i.e. below the ηη threshold, the inelasticity of the ππ → KK̄
channel is equal to that of the ππ → ππ one. Therefore, the inelasticity of
the ππ → KK̄ channel is also fitted to the GKPY equations, moreover fitted
directly.

2. Simple trigonometric proof

Full expression for the GKPY equations reads
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where the CII′ is the crossing matrix constant and KII′
``′ (s, s′) are kernels

constructed for partial wave projected amplitudes with imposed s↔ t cross-
ing symmetry condition. Given tIJ(s) amplitude fulfills this symmetry when
the output amplitude Re t

I(OUT)
J (s) is equal to the input one Re t

I(IN)
J (s).

Figure 2 presents effective two pion mass mππ dependence of the input
and output amplitudes before and after fitting to the GKPY equations.
In Fig. 3 one can see that the real part of the amplitude increases with
phase shifts below δ00 = 45◦ and decreases above this value. Knowing, from
Fig. 2, the energy dependence of the input and output amplitudes, one could
intuitively think that the former one should decrease below ≈ 650 MeV and
increase above this energy. It corresponds to decrease of the phase shifts in
both regions. Simultaneously, however, the OUT real part also changes due

Fig. 2. Input (dashed line) and output (solid line) real parts of the amplitudes
before fitting (left panel) and after fitting (the right panel) to the GKPY equations.
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Fig. 3. Left panel: dependence of the real and imaginary part of the amplitude
on the phase shifts; Right panel: gradient of the real and imaginary part of the
amplitude in function of the phase shifts.

to variation of the IN amplitude in Eq. (1). As one can see in Fig. 3, below
δ00 = 90◦, the IN part decreases together with decreasing phase shifts. The
integral of the product K00

00 (s, s′)Im t00(s
′) over s′ (hereafter KT 00

00 part) is
presented in Fig. 4. Due to positive value of the Im t00(s

′) and its smooth
variation below about 900 MeV the s-dependence of this integral is mostly
given by the kernel part i.e. does not depend noticeably on parameterization
of the phase shifts. Therefore, decrease of the phase shifts leads to decrease
of the KT 00

00 (i.e. the OUT amplitude) below about 650 MeV and to increase
above this energy. Bigger gradient of the IN amplitude than that of the OUT
seen in Fig. 3 in the energy range corresponding to δ00 between 20◦ and 110◦

does not allow, however, for a reduction of the distance between the IN
and OUT amplitudes. Therefore, the only possibility to fit the IN and OUT
parts is to increase the phase shifts in the whole region below about 900 MeV.
Using the same arguments as above, one can easily show that in this case
the OUT amplitude will go up (down) below (above) about 650 MeV and
will quickly catch up the IN amplitude. This situation one can see in Fig. 2
where the IN and OUT amplitudes after fitting are presented.

In Fig. 4 one can see decomposition of theKT 00
00 into parts being integrals

along the right and left cut. Dominant is the former part what contradicts
opinion that introduction of the left cut into any amplitude can sufficiently
mimic fulfillment of the crossing symmetry condition and thereby can be
used instead of the fitting to the Roy-like equations.

Figure 5 presents an example of the phase shifts corresponding to the
“old” amplitude [7] supplemented by near threshold expansion polynomial
(extended amplitude) and next fitted to the GKPY equations (re-fitted am-
plitude). Clearly is seen a rise of the phase shifts related with movement of
the σ pole towards the smaller mass and width.
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Fig. 4. Effective two pion mass dependence of the KT 00
00 term (left panel) and of

its left cut part (
∫
Lcut), right cut part (

∫
Rcut) and of their sum (right panel).

Fig. 5. Phase shifts for the S0 wave as a function of effective two pion mass m for
the three amplitudes considered in the text. Data are taken from [7].

3. Conclusions

Simple proof of correctness of the results obtained in the recent dispersive
analysis of the data [1, 2, 4] has been presented. These results concern
position of the σ pole which, due to this analysis, significantly moved in the
complex energy plane towards the smaller mass and width. In the proof only
purely mathematical properties of the tested amplitudes have been used. It
has been shown that the shift of the σ pole is entirely due to the crossing
symmetry condition imposed on the dispersion relations used in fitting of
the S- and P -wave ππ amplitudes. Also answers on the most frequently
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asked questions about the dispersive analysis of the data have been given.
One can expect that this simple proof will eliminate still existing doubts
about the parameters of σ meson.

This work has been funded by the Polish National Science Center (NCN)
grant DEC-2013/09/B/ST2/04382.
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