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At small lattice spacing or when using overlap fermions, lattice QCD
simulations tend to become stuck in a single topological sector. Physical ob-
servables, e.g. hadron masses, then differ from their full QCD counterparts
by 1/V corrections, where V is the spacetime volume. These corrections
can be calculated order by order using the saddle point method. We calcu-
late all corrections proportional to 1/V 2 and 1/V 3, and test the resulting
equations for several models: a quantum mechanical particle on a circle,
the Schwinger model and SU(2) Yang–Mills theory.
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1. Introduction

Topology freezing or fixing are important issues in quantum field theory,
in particular in QCD. For example, when simulating chirally symmetric over-
lap quarks, the corresponding algorithms do not allow transitions between
different topological sectors, i.e. topological charge is fixed (cf. e.g. [1, 2]).
Also when using other quark discretizations, e.g. Wilson fermions, topology
freezing is expected at lattice spacings a . 0.05 fm, which are nowadays
still fine, but realistic [3, 4]. There are also applications, where one might
fix topology on purpose. For example, when using a mixed action setup
with light overlap valence and Wilson sea quarks, approximate zero modes
in the valence sector are not compensated by the sea. The consequence is
an ill-behaved continuum limit [5, 6]. A possible solution to overcome this
problem is to restrict computations to a single topological sector, either by
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sorting the generated gauge link configurations with respect to their topo-
logical charge or by directly employing the so-called topology fixing actions
(cf. e.g. [7–9]).

In view of these issues, it is important to develop methods, which allow
to obtain physically meaningful results (i.e. results corresponding to unfixed
topology) from fixed topology simulations. The starting point for our work
are calculations from the seminal papers [10, 11]. We extend these calcu-
lations by including all terms proportional to 1/V 2 and 1/V 3. We apply
the resulting equations to a quantum mechanical particle on a circle, to the
Schwinger model and to SU(2) Yang–Mills theory, and determine “hadron
masses” at unfixed topology from fixed topology computations and simula-
tions (for related exploratory studies in the Schwinger model and the O(2)
and O(3) non-linear Sigma model cf. [12–14]).

A part of this work has already been published [15–17].

2. Hadron masses from fixed topology simulations

2.1. Two-point correlation functions at fixed topology

The partition function and the two-point correlation function of a hadron
creation operator O at fixed topological charge Q and finite spacetime vol-
ume V are given by

ZQ,V ≡
∫
DADψDψ̄ δQ,Q[A]e

−SE[A,ψ̄,ψ] ,

CQ,V (t) ≡ 1

ZQ,V

∫
DADψDψ̄ δQ,Q[A]O

†(t)O(0)e−SE[A,ψ̄,ψ] . (2.1)

Using a saddle point approximation, the correlation function has been ex-
panded in [10] according to

CQ,V (t) = α(0) exp

(
−MH(0)t−

M
(2)
H (0)t

2E2V

(
1− Q2

E2V

))
+O

(
1

V 2

)
,

(2.2)
where α(0) is a constant, MH(θ) the hadron mass at vacuum angle θ, Ek ≡
e

(k)
0 (θ)|θ=0 (E2 = χt, the topological susceptibility) and e0 is the vacuum
energy density. In [16], we have extended this calculation by including all
terms proportional to 1/V 2 and 1/V 3
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CQ,V (t) = α(0) exp

(
−MH(0)t− x2

2E2V
−
(
x4 − 2(E4/E2)x2 − 2x2

2 − 4x2Q
2

8(E2V )2

)
−
(

16(E4/E2)2x2 + x6 − 3(E6/E2)x2 − 8(E4/E2)x4 − 12x2x4 + 18(E4/E2)x2
2 + 8x3

2

48(E2V )3

−x4 − 3(E4/E2)x2 − 2x2
2

4(E2V )3
Q2

))
+O

(
1

(E2V )4
,

1

(E2V )4
Q2 ,

1

(E2V )4
Q4

)
, (2.3)

where xn ≡ M
(n)
H (0)t + β(n)(0) (for the definition of β(n) cf. [16]). The ex-

pansions (2.2) and (2.3) are rather accurate approximations, if the following
conditions are fulfilled:

(C1) 1/E2V � 1 , |Q|/E2V � 1.

(C2) |x2| =
∣∣∣M (2)

H (0)t+ β(2)(0)
∣∣∣ . 1.

(C3) mπ(θ)L & 3 . . . 5� 1 (mπ: pion mass, L: periodic spatial extension).
(C4) (M∗H(θ)−MH(θ))t� 1 , MH(θ)(T − 2t)� 1.

Note that the effective mass at fixed topology, defined in the usual way,

M eff
Q,V (t) ≡ − 1

CQ,V (t)

dCQ,V (t)

dt
, (2.4)

exhibits severe deviations from a constant behavior at large temporal separa-
tions t [16], which is in contrast to ordinary quantum field theory at unfixed
topology.

2.2. Extracting hadron masses

A straightforward method to determine physical hadron masses (i.e.
hadron masses at unfixed topology) from fixed topology simulations is to
fit either (2.2) or (2.3) to two-point correlation functions computed at fixed
topology. Among the results of the fit are then the hadron mass at un-
fixed topology MH(0) and the topological susceptibility E2 = χt. A simi-
lar method is to first determine hadron masses MQ,V at fixed topological
charge Q and spacetime volume V , and then use equations based on (2.2)
or (2.3) to determine MH(0) and E2 = χt. For a detailed discussion cf. [16].

3. A quantum mechanical particle on a circle at fixed topology

For a first test of the methods mentioned in Section 2.2, we decided for
a simple toy model, a quantum mechanical particle on a circle in a square
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well potential. This model shares some important features with QCD, e.g.
the existence of topological charge and the symmetry +θ ↔ −θ. Moreover,
it can be solved numerically up to arbitrary precision. We determine MH(0)
(which is the energy difference between the ground state and the first excita-
tion) and χt from fixed topology two-point correlation functions as outlined
in Section 2.2. We compare the 1/V expansion from [10] (Eq. (2.2)) and
our 1/V 3 version (Eq. (2.3)). We find rather accurate results for MH(0) and
χt (cf. Table I). Note that the relative errors for both MH(0) and χt are
smaller, when using the 1/V 3 version (2.3). For details cf. [15, 16].

TABLE I

MH(0) and χt from fixed topology two-point correlation functions; “error” denotes
relative differences to the exact results M̂H = 0.40714 and χ̂t = 0.00645 at unfixed
topology.

Expansion M̂H(0) Error χ̂t Error

|Q|
χtV
≤ 0.5

(2.3), [10] 0.40702 0.029% 0.00629 2.5%

(2.3) 0.40706 0.019% 0.00633 1.9%

4. The Schwinger model at fixed topology

The Schwinger model, defined by the Lagrangian

L
(
ψ, ψ̄, Aµ

)
≡ ψ̄(γµ(∂µ + igAµ) +m)ψ + 1

2FµνFµν (4.1)

also shares certain features with QCD, most prominently confinement. Fur-
thermore, simulations are computationally inexpensive, because there are
only 2 spacetime dimensions.

We have studied the “pion” mass mπ and the static quark–antiquark
potential Vqq̄ for various separations. Results are summarized in Table II.
In the first line (“fixed top.”), results obtained from two-point correlation
functions at fixed topology (as outlined in Section 2.2) are listed. In the sec-
ond line (“unfixed top.”), they are compared to results from standard lattice

TABLE II

Comparison of results obtained from computations at fixed and at unfixed topology.

mπa Vqq̄(1a)a Vqq̄(2a)a Vqq̄(3a)a Vqq̄(4a)a

Fixed top. 0.2747(2) 0.12551(4) 0.2247(2) 0.3005(3) 0.3581(7)
Unfixed top. 0.2743(3) 0.12551(4) 0.2247(2) 0.3008(4) 0.3577(9)
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simulations, where gauge link configurations from all topological sectors are
taken into account. One can observe agreement demonstrating that one can
obtain correct and accurate physical results from fixed topology simulations.
For details cf. [17].

5. SU(2) Yang–Mills theory at fixed topology

Currently, we perform fixed topology studies of SU(2) Yang–Mills theory,

L(Aµ) ≡ 1
4F

a
µνF

a
µν , (5.1)

which is expected to be rather similar to QCD. Again, we explore the static
quark–antiquark potential for various separations.

The left plot in Fig. 1 shows that there is a significant discrepancy be-
tween the potential from computations restricted to a single topological
sector and corresponding results obtained at unfixed topology. The plot,
therefore, underlines the necessity of a method to extract physical results
from fixed topology computations.

In the right plot of Fig. 1, we compare the static potential obtained from
Wilson loops at fixed topology (as outlined in Section 2.2) and from stan-
dard lattice simulations, where gauge link configurations from all topological
sectors are taken into account. As for the Schwinger model, one can observe
excellent agreement demonstrating again that one can obtain correct and
accurate physical results from fixed topology simulations.

Fig. 1. (left) Vqq̄(6a) for different topological sectors Q = 0, 1, 2, 3 for spacetime
volume V/a4 = 164. (right) Comparison of potential results obtained from compu-
tations at fixed and at unfixed topology.

Details regarding our study of Yang–Mills theory at fixed topology will
be published in the near future.
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6. Conclusions and outlook

We have extended relations from the literature [10, 11] relating two-point
correlation functions at fixed topology to physical hadron masses (i.e. hadron
masses at unfixed topology). We have successfully applied our resulting
equations to various models. We plan to test the same methods for QCD
in the near future, where hadron masses obtained from different topological
sectors also exhibit clear differences (for an example cf. [18], where the pion
mass has been computed in various topological charge sectors).
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