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We investigate the behaviour of the pion decay constant and the pion
mass in two-flavour lattice QCD, with the physical and chiral points as
ultimate goal. Measurements come from the ensembles generated by the
CLS initiative using the O(a)-improved Wilson formulation, with lattice
spacing down to about 0.05 fermi and pion masses as low as 190 MeV.
The applicability of SU(2) chiral perturbation theory is investigated, and
various functional forms, and their range of validity, are compared. The
physical scale is set through the kaon decay constant, whose measurement
is enabled by inserting a third, heavier valence strange quark.
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1. Introduction

The only well-established, first-principle tool to explore the low-energy
dynamics of QCD without additional assumptions is, to date, Lattice QCD;
it is the formulation of the theory on a discrete spacetime that acts as a
regulator while opening the way to numerical computations, thus enabling
the study of intrinsically nonperturbative features of the theory.

On the other hand, there is little doubt that spontaneous breaking of the
chiral symmetry takes place and that, at least in the limit of small quark
masses, the effective chiral theory known as Chiral Perturbation Theory
(χPT) is a valid description of QCD [1, 2]: still, in the former there remain
unknown constants (“low-energy constants”, or LECs) that only the exper-
iment sensu lato (i.e. including numerical simulations) can constrain (see,
e.g., [3] for a review of the relation between χPT and Lattice QCD results).
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In this work, data from large-volume two-flavour (Nf = 2) Lattice QCD
simulations are used to test χPT and determine some of its LECs. Along
the way, different truncations and variations of the predictions from χPT
are applied and their practical range of validity is examined. The lattice
formulation also introduces possible sources of uncertainty (e.g. the system
is necessarily finite and discrete), but this seems to be under control in this
investigation.

1.1. Chiral Perturbation Theory

χPT is an effective field theory for the low-energy regime of QCD. Its
fundamental fields are, in the standard formulation, the pion fields U ; the
theory exhibits spontaneous chiral symmetry breaking by construction, sig-
nalled by the fact that the leading-order LEC Σ, corresponding to the chiral
condensate, is nonzero. Together with F , the pion decay constant in the
chiral limit, those are the two leading-order LECs of the two-flavour χPT
(the so-called SU(2) χPT). The theory is order-by-order renormalisable, im-
plying that there are infinitely many LECs: for instance, at next-to-leading
order there are seven such energy scales Λn, usually expressed with reference
to the scale of the physical pion mass: `n = logΛ2

n/m
2
π,phys, for n = 1, . . . 7.

A distinctive feature of χPT is that its predictions, usually expressed as
expansions in small quark masses, small pion masses or analogous, present
logarithmic terms (chiral logarithms).

Such is the case for the two formulae that are needed throughout this
work (here we stick to the conventions in Section 5.1 of [3]): the quark-mass
dependence of the pion mass mπ and its decay constant fπ, respectively1.
After adopting an independent variable that is as closely related to lat-
tice measurements as possible, y = m2

π/(4πfπ)
2 (with the physical point

at yπ ' 0.013), those two relations, to NNLO, can be written in the form
(ξ-expansion)
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; (1)

1 Throughout this work, lowercase symbolsm and f refer to masses and decay constants
in physical units, while M = am and F = af denote quantities in lattice units, i.e.
in appropriate powers of the lattice spacing.
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qM = 60`12 − 33`3 − 12`4 + 52 + 15 log yπ ; (3)

qF = 18`4 − 15`12 + 3 log yπ −
29

2
. (4)

Here, the overall amplitudes are meant in lattice units, hence they will have
different values at each of values of the inverse bare coupling β for which we
have lattice determinations (each β is in a one-to-one relation to a lattice
spacing). Two LECs appear here at NLO, namely `3 and `4; to NNLO, more-
over, three more enter, which are cF , cM and the one associated, similarly
as for the other `m, to the combination Λ2

12 = (7Λ2
1 + 8Λ2

2)/15, [4].

2. Lattice computations

The masses and decay constants were calculated on configurations gener-
ated, within the CLS initiative [6], using the O(a)-improved two-flavour Wil-
son discretisation of the QCD action. Three lattice spacings a ' 0.075, 0.065,
0.048 fm were simulated in order to get a handle on the continuum limit,
corresponding to β = 5.2, 5.3, 5.5. All systems satisfy the conditionmπL ≥ 4
(with L the spatial extent of the discretised system), generally thought to en-
sure safety from finite-size deviations. The fifteen available ensembles span
a range of pion masses down to about 192 MeV, along which χPT formulae
are fitted.

The pseudoscalar-sector observablesMπ, Fπ, as well as the quark massMq,
have been extracted by measurements of two-point functions of quark bilin-
ears, which, in turn, are measured through stochastic sampling, as detailed
in [5]. The (bare) quantities are then known with typically less-than-percent
accuracy (there are renormalisation factors entering afterwards,
which somewhat increase the uncertainties at play. ZA alone, in particu-
lar, is responsible for about 40% of the error on the final decay constants).
Throughout the analysis, errors are propagated carefully and the methods
developed in [7] are applied in order not to underestimate hidden “slow
modes” in the Monte Carlo chains.
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For the translation into physical quantities, scale-setting is a necessary
last ingredient. Usually, this is done by measuring a high-precision quantity
on the lattice, say the kaon decay constant FK(β), and then using the ex-
perimental value fK = 155 MeV to get a(β) = FK/fK in fermi (note that
here |Vus| also enters). This was the procedure followed in this analysis: the
previous experience shows that the kaon decay constant provides a rather
robust scale and allows for less-than-percent precisions on a(β). We refer
to [5] for the technical details on how valence s-quarks are added to a theory
with only the (u, d) pair as dynamical quark content (partial quenching).

3. Chiral fits to Mπ, Fπ

In practice, instead of Eq. (1), the equivalent combination ρ ≡M2
π/(2Mq)

is built and fitted to an analogous chiral formula with just a different am-
plitude in front: in the continuum, this amplitude would be just a3Σ/F 2,
with Σ representing the chiral condensate in physical units. Moreover, the
data are not on the continuum, hence a further term in the overall ampli-
tude is added modelling the a2 discretisation effects. Finally, for the sake
of convenience, we rewrite this amplitude so as to obtain, directly as a fit
parameter, the adimensional ratio of Σ to the physical pion decay constant
cube, S0 = Σ/f3π,phys. The NNLO fit function for ρ, then, is analogous to
Eq. (1), but in place of the overall B2

β , we have the prefactor

σβ =
(
S0 + F 2

βS1
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}3

, (5)

the term in curly brackets expressing fπ(yπ)/f as per Eq. (2) (or variations
thereof when needed). The two datasets, Fπ and Mπ, are fitted simultane-
ously, and for Fβ we still have three different values, one per each β.

Three families of functional forms are attempted: (a) the NNLO for-
mulae shown so far; (b) their NLO truncation, i.e. limited to terms of the
order of y and y log y; and (c) the so-called “junction” formulae. The latter
come from the empirical observation that pion observables, in the available
range, seem to just lie on a straight line: on the other hand, we expect χPT,
close enough to the origin, to take over; hence, we consider a linear function
of y beyond some “junction point” y > yjct, and the NLO formulae on the
left, with continuity, up to the first derivative, in yjct. The total number
of fit parameters is 10 for (a) and 7 for (b) and (c). Also different pion-
mass fit ranges are explored, namely mπ ≤ 650, 500, 390 and 345 MeV —
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corresponding to using 15, 12, 8 and 7 ensembles, respectively (and each
ensemble provides two data points). Representative fits to the datapoints
are shown in Fig. 1.
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Fig. 1. Chiral behaviour of Fπ (left) andM2
π/(2Mq) (right) as a function of y. Each

dataset corresponds to a value of β (the topmost line being for the largest lattice
spacing). A one-sigma band is shown for the NLO fit with mass-cutoff 345 MeV
and for the NNLO cut at 500 MeV. The vertical line marks yπ.

We focus on the results for: Fβ (and the continuum-limit physical value
fπ that stems from it), Σ1/3, the higher-order LECs `3, `4, `12; the chiral
condensate, as well as the quark mass mq, are here always understood to be
expressed in the MS scheme at scale µ = 2 GeV. All fit variants performed
will enter an assessment of the systematic uncertainties involved, generally
of higher magnitude than the similar analysis performed in the kaon sector.
Inspection of “stability plots” (i.e. pion-mass-cutoff dependence of the fit
parameters, see Fig. 2) suggests that, as far as Fπ is concerned, NLO with low
mass-cut coincides with NNLO, hence we trust the former, with the lowest
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Fig. 2. “Stability plots” for selected fit results: ycut (i.e. pion-mass-cutoff) de-
pendence of Fβ=5.3 (left) and of Σ1/3 (right) for the various fit procedures. The
horizontal axis is y2cut, which should roughly make the points lie on a straight line.
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mass-cut, and take its continuum limit (upon insertion of the FK-based scale-
setting), which yields fπ = 91.7(1.5)(+0.2

−0.7) MeV2. Also the chiral condensate
depends weakly on the fit procedure and, again, we use the NLO fit and quote
Σ1/3 = 261.5(3.2)(5.8) MeV, a value compatible with the world-average
recently reported in [3]. A computation of Σ, based on condensation of
Dirac modes near zero, will be reported in [8].

As for the higher-order LECs, their precise determination is notoriously
very demanding (see, e.g., [4] for a recent similar analysis), in particular due
to changes as one adjusts slightly the fit strategy: we therefore just remark
that NNLO fits are unable to give estimates which are not compatible with
zero within their errors, and report the best results — again from NLO
fits at minimum pion-cut — for: `3 = 1.3(0.8) and `4 = 4.9(0.7). We
refer to a forthcoming publication for a more detailed, conclusive analysis
of these Nf = 2 data, and, in particular, an assessment of the systematic
uncertainties on the NLO constants.

4. Conclusions

We find that the two-flavour Lattice QCD measurements in the pion
sector using χPT-inspired formulae are much less straightforward to analyse
than the analogous ones in the kaon sector (with the s a valence quark). A
general conclusion is that the range of validity of NLO χPT (if not of χPT
tout court) is shorter, which prompts the use and comparison of several
possible fit functions. Even so, as soon as one turns their attention to NLO
low-energy constants the uncertainties (especially the systematic ones) are
rather large. In order to provide a thorough characterisation of two-flavour
QCD in terms of its LECs, then, it would be desirable to include more
ensembles with even smaller pion masses; however, production of Nf = 2
CLS ensembles has been discontinued in favour of Nf = 2+1 systems, where
presumably similar issues will be seen.

The Author gratefully acknowledges the Conference Organisers for their
patience and for providing such an enjoyable and informal atmosphere, as
was the case in previous editions of Excited QCD as well.
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