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PROBING NUCLEONS WITH PHOTONS
AT THE QUARK LEVEL∗
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Describing electromagnetic interactions with hadrons from the quark
level requires knowledge of the underlying quark–gluon ingredients. I dis-
cuss some properties of the quark–photon vertex and quark Compton ver-
tex, and the role of electromagnetic gauge invariance and vector-meson
dominance. A simple parametrization for the quark–photon vertex is given.
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1. Introduction

The electromagnetic interaction plays an important role in mapping out
the internal quark–gluon structure of the nucleon. This is evidenced by a
sizeable number of ongoing and future experiments at Jefferson Lab, MAMI,
ELSA, or the upcoming PANDA/FAIR experiment. Among the various the-
oretical approaches, also the Dyson–Schwinger equations (DSEs) of QCD
[1–3] have provided insight along the way. Already a rainbow-ladder trun-
cation, where quarks and gluons interact through a tree-level vertex only,
and quarks and antiquarks via gluon exchange, has proven quite useful in
describing a range of hadron properties. These include pseudoscalar and
vector-meson spectra, their form factors and other structure properties [4];
but also nucleon and ∆-baryon observables such as masses and electromag-
netic, axial and transition form factors [5–10]. The main missing contribu-
tions to form factors presumably come from the cloud of virtual pions that
‘dress’ the nucleon. Calculations beyond rainbow-ladder to shed some light
on these issues are underway [11–14].
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The question is then: why does such a ‘simple’ truncation work at all?
Perhaps one answer is that ground-state hadrons (the ‘s waves’ in the quark
model) are not so sensitive to the details of the quark–gluon interaction.
It is then scalar and axial vector mesons, heavy–light systems or excited
hadrons where mismatches should appear (and they do indeed [15]). Sym-
metries are another answer: they are implemented at the quark level and
carefully maintained throughout every step in these calculations. Through
Ward–Takahashi identities (WTIs), a gluon ladder kernel is linked to the
gluon exchange that defines the quark DSE. One cannot simply add inter-
action diagrams in a qq̄ system without dressing the quark–gluon vertex
simultaneously, and all other Green functions will undergo changes as well.
These symmetries ensure that the pion is a qq̄ bound state but also QCD’s
Goldstone boson in the chiral limit. They enforce electromagnetic current
conservation for electromagnetic form factors, the Goldberger–Treiman re-
lation for axial form factors and so on, so that no ‘fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must
couple photons to nucleons in a symmetry-preserving way [16–18]. To this
end, we should first understand how a photon microscopically interacts with
a quark. Two relevant Green functions that encode this interaction are the
quark–photon vertex and the quark Compton vertex. Here, I will discuss
some of their properties, the role of electromagnetic gauge invariance in
determining their structure, and their implications for hadron properties.

2. Quark–photon vertex

Several well-known characteristics of form factors are reflected in the
nonperturbative structure of the dressed quark–photon vertex. The vertex
is defined as the γµ-contraction of the qq̄ four-point function, see Fig. 1.
The four-point function contains all intermediate hadronic states that can
be formed by a valence quark and antiquark. Therefore, its singularity struc-
ture in the vector channel will be inherited by the quark–photon vertex, i.e.,
‘vector-meson dominance’ is implemented by construction. On the other
hand, the definition allows to derive an inhomogeneous Bethe–Salpeter equa-
tion (BSE) for the vertex; it depends on the qq̄ kernel where the truncation
to rainbow-ladder is made. Its numerical solution has been first achieved in
Ref. [19] and nowadays become almost a routine task. However, even before
solving the vertex dynamically, one can gain some insight based on general
properties alone.
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Fig. 1. Quark–photon vertex and the ρ-meson poles it contains.

Electromagnetic gauge invariance entails that the quark–photon vertex
can be separated into a ‘gauge part’ and a purely transverse part

Γµ(k,Q) = [iγµΣA + 2kµ (i/k ∆A +∆B)] +

i 8∑
j=1

fj τ
µ
j (k,Q)

 . (1)

Here, Q is the photon momentum and k = (k+ +k−)/2 the average momen-
tum of the quark legs, see Fig. 1. The gauge part in the first bracket is the
Ball–Chiu vertex [20] that satisfies the vector WTI. It is completely deter-
mined by the dressed fermion propagator. At large Q2, it reproduces the
tree-level structure, whereas the nonperturbative dressing effects are con-
tained in ΣA, ∆A and ΣB. These are sums and difference quotients of the
quark dressing functions A(p2) and B(p2)

ΣF (k,Q) =
F
(
k2+
)

+ F
(
k2−
)

2
, ∆F (k,Q) =

F
(
k2+
)
− F

(
k2−
)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormaliza-
tion constant Z2 at large p2 and is nonperturbatively enhanced. The quark
mass functionM(p2) = B(p2)/A(p2) passes through the current-quark mass
at the renormalization point and, via solving the quark DSE, becomes the
‘constituent-quark’ mass scale at low momenta.

The second bracket in Eq. (1) is the transverse part that carries dynam-
ical information from timelike vector-meson poles and the quark anomalous
magnetic moment. Transversality and analyticity demand that the trans-
verse part must be at least linear in the photon momentum Q and vanish
at Q→ 0. A tensor basis that implements these features automatically was
constructed in Ref. [21]. It can be written in a compact form [22]

τµ1 = tµνQQ γ
ν , τµ5 = tµνQQ ik

ν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] , τµ6 = tµνQQ k

ν/k ,

τµ3 = i
2 [γµ, /Q] , τµ7 = tµνQk k ·Qγν ,

τµ4 = 1
6 [γµ, /k, /Q] , τµ8 = tµνQk

i
2 [γν , /k] , (3)
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where tµνab = a · b δµν − bµaν is transverse to aµ and bν and regular in the
limits a, b → 0. We have also employed the antisymmetric combination of
three γ-matrices: [A,B,C] = [A,B]C + [B,C]A+ [C,A]B.

Since the gauge part is already determined by the quark propagator, let
us focus on the transverse dressing functions f1...8(k2, k · Q,Q2). We can
express the three Lorentz invariants on which they depend in terms of the
variables [23]

S0 =
k2

3
+
Q2

4
, a =

k ·Q√
3S0

, s = 1− Q2

2S0
. (4)

The symmetric variable S0 is a singlet under the permutation group S3 and
carries the mass dimension. The angular variables a and s form a doublet
and constitute the Mandelstam plane which is illustrated in Fig. 2. The lines
of constant k2+, k2− and Q2 are shown together with the spacelike region that
forms the interior of a unit circle. In the timelike domain, one eventually
encounters vector-meson poles at Q2 = −m2

ρ, but also quark singularities
at timelike values of k2± (which may be complex poles or branch cuts in-
stead). Charge-conjugation invariance entails that the dressing functions
are symmetric under a reflection a→ −a.

Fig. 2. Left panel: Mandelstam plane in the variables a and s. Right panel: angular
dependence of the transverse dressing function −f1.

Somewhat surprisingly, the transverse dressing functions fj exhibit only
a weak dependence on the variables a and s in the spacelike region. This is
exemplified in Fig. 2: the angular dependence of f1 produces only a narrow
spread in the symmetric variable S0. At least for crude modeling purposes,
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one can then parametrize the BSE result by simple multipoles in S0

fj
(
k2, k ·Q,Q2

)
≈ cj/Λ

nj

(1 + S0/Λ2)nj
for

S0 > 0 ,
a2 + s2 < 1 .

(5)

The exponents nj are the dimensions of the basis elements in Eq. (3). The
dimensionless coefficients cj are extracted from our numerical BSE solution
and collected in Table I. The scale Λ = 0.65 GeV yields the closest simulta-
neous description of all eight dressing functions.

TABLE I

Simple parametrization of the rainbow-ladder BSE result for the quark–photon
vertex, cf. Eq. (5). The values correspond to the standard (central) parameter set
for the quark–gluon interaction in Ref. [24].

f1 f2 f3 f4 f5 f6 f7 f8

cj −1.0 0.15 0 1.0 −1.3 −0.3 0.5 −0.3

nj 2 5 1 2 3 4 4 3

In Eq. (3) only the elements τµ3 , τ
µ
4 and τµ8 are linear in the photon

momentum Q, whereas all others depend on higher powers of Q. Hence,
only these two can contribute to the magnetic moments of hadrons (in addi-
tion to the Ball–Chiu vertex). Table I shows that the f3 component, which
encodes the ‘anomalous magnetic moment of a quark’, is practically zero
in rainbow-ladder, whereas f4 is nonzero. The smallness of f3 has the in-
teresting consequence that nucleon magnetic moments calculated from the
three-body Faddeev equation are generated by the Ball–Chiu vertex alone,
whereas the transverse part of the vertex contributes almost nothing [6].
Still, the calculated magnetic moments are reasonably close to their exper-
imental values, with discrepancies believed to be due to pion-cloud effects.
If a quark anomalous magnetic moment is produced by interactions beyond
rainbow-ladder [25], judging from these results it seems at least unlikely to
generate large corrections to form factors. Another, perhaps more direct, test
of the properties of the quark–photon vertex is the vector current–current
correlator, i.e., the hadronic vacuum polarization which is relevant for the
muon g − 2 puzzle [26, 27].

Finally, the structure of the quark–photon vertex is reflected in the time-
like properties of hadrons, as it inherits the vector-meson pole structure from
the quark four-point function. ‘Vector-meson dominance’ is thus a self-
consistent outcome of the inhomogeneous BSE, as explicitly demonstrated
in Ref. [19] and illustrated in Fig. 3: vector-meson poles are dynamically
generated at the quark–gluon level. However, vector-meson dominance is
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only part of the full picture. The Ball–Chiu vertex depends only on the
quark propagator and cannot produce timelike vector-meson poles. Never-
theless, it is the dominant contribution in the spacelike region: it reproduces
the nucleon’s charge at Q2 = 0 and, effectively, also its magnetic moments.
Timelike poles can only come from the transverse piece in Eq. (1), which
does not contribute to the charge and vanishes for Q2 →∞. With this per-
spective, gaining a deeper understanding of form factors from vector-meson
dominance formulas alone seems a bit too optimistic.
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Fig. 3. Sketch of a generic form factor in the spacelike and timelike region. The
upper plot exemplifies a typical ‘experimental curve’ with characteristic ρ-meson
bumps in the timelike region, modeled after those in the pion form factor. The
lower plot illustrates a typical calculated result in the spacelike region with its
separation into Ball–Chiu and transverse part. Only the latter contains ρ-meson
poles. As long as the truncation does not dynamically accommodate a ρ → ππ

decay, these poles do not carry widths.

On the other hand, it is the same quark–photon vertex that enters in
pion and nucleon form-factor calculations. Since the vertex alone carries
the resonance dynamics, it is conceivable that the resonance structure in
the nucleon’s unphysical window, below NN̄ threshold, is similar to what
is known from the pion form factor, as indicated in Fig. 3. This yields a
straightforward prescription, for example, for modeling the ∆ → Ne+e−
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Dalitz decay in pp scattering [28, 29]. In any case, as long as the trunca-
tion that is employed in the vertex BSE does not dynamically implement
a ρ→ ππ decay, the calculated poles are real and do not carry widths: in
rainbow-ladder, hadrons are stable bound states that do not decay. Hence,
in order to describe the timelike properties of hadrons, it will be crucial
to develop interactions beyond rainbow-ladder that accommodate such fea-
tures.

3. Quark Compton vertex

While form factors probe certain aspects of the electromagnetic structure
of hadrons, two-photon processes present a far richer spectrum of applica-
tions: from nucleon polarizabilities to nucleon structure functions, general-
ized parton distributions or the proton radius puzzle. These are all, in some
way or another, related to the nucleon’s Compton scattering amplitude.
In the same way as electromagnetic form factors test the underlying quark–
photon vertex, the Compton amplitude depends upon the quark two-photon
or quark Compton vertex [22, 30].

The quark Compton vertex can be written as the sum of Born terms
plus a one-particle-irreducible structure part, cf. Fig. 4, and mirrors the
properties of the quark–photon vertex in many respects. Similarly as in
Fig. 1, it can be defined as the contraction of the qq̄ Green function with the
Born terms. Hadronic states in the Green function appear as t-channel poles
in the Compton vertex (and nucleon Compton amplitude): pion, scalar,
axial-vector poles etc. One can derive an inhomogeneous BSE for the vertex
that depends again upon the qq̄ kernel. Its rainbow-ladder solution, together
with the t-channel poles it produces, was presented in Ref. [22].

Fig. 4. Separation of the quark Compton vertex into Born terms and a 1PI part.

The Compton vertex satisfies a WTI which allows to write it like Eq. (1),
as the sum of a ‘gauge part’ and a purely transverse piece. The transverse
part consists of 72 tensor basis elements; transversality and analyticity imply
that they must vanish with at least two powers in the photon momenta.
Applied to the (onshell) nucleon Compton amplitude, this is the low-energy
theorem in Compton scattering, and the photon momentum counting is the
same as the counting in chiral perturbation theory. One can then identify
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the presumably dominant tensor structures in the vertex: for example,

tµαQ′p t
αν
pQ and εµαQ′p ε

αν
pQ , with εµνab = εµναβ aα bβ (6)

encode the ‘quark electric and magnetic polarizabilities’, respectively.
In contrast to the form factor example, the quark Compton vertex does

not generate the full nucleon Compton scattering amplitude but only the
subset of its ‘handbag’ diagrams. Those alone are not sufficient for elec-
tromagnetic gauge invariance [22]; nevertheless, insight can be gained from
analyzing the individual strengths of the vertex and their importance at
the hadron level. A more direct test of the Compton vertex is the photon
four-point function where gauge invariance is satisfied without the need for
additional terms [18, 27]. The four-point function enters in the light-by-light
contribution to the muon anomalous magnetic moment and, to some extent,
provides an ‘experimental probe’ of the structure of the Compton vertex
— much like form factors probe the properties of the quark–photon vertex.
Work in this direction is currently in progress.
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