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We present a calculation of the three-gluon vertex from its Dyson–
Schwinger equation in the Landau-gauge Yang–Mills theory. All tensor
structures are considered and back-coupled self-consistently. Within the
chosen truncation, two-loop diagrams as well as diagrams containing Green’s
functions beyond the primitively divergent ones are neglected. Only the
three-gluon vertex is chosen to be dynamical; the other propagators and
vertex functions are provided as separate solutions of their Dyson–Schwinger
equations or by Ansatz. For both scaling- and decoupling-type solutions
we observe, in agreement with other studies, a sign change in the tree-level
tensor dressing at a non-perturbative scale.
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1. Introduction

In Yang–Mills theories the three- and four-gluon vertices are those two
primitively-divergent Green functions through which the gluon self-inter-
action of non-Abelian QCD is inherent. Thus, it is expected that many
interesting non-perturbative phenomena are encoded within. Further, they
are expected to play a prominent role in phenomenological studies of QCD
and QCD-like theories, especially in the context of bound states. In this
paper, we focus upon the three-gluon vertex as discussed in Ref. [1].
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There have been numerous quantitative and qualitative investigations
of this vertex. General tensor decompositions consistent with the Slavnov–
Taylor identities of the Yang–Mills theory were considered in [2, 3]. There are
extensive studies within perturbation theory [4, 5], but also non-perturbative
calculations of infrared critical exponents for scaling [6, 7] and decoupling [8]
solutions. Together with lattice results for a particular projection of the
vertex [9, 10], this knowledge is sufficient for the construction of vertex
models used in Dyson–Schwinger equation (DSE) based calculations of the
gluon propagator [11]. The fact that the gluon propagator obtained in this
way is, in turn, in good agreement with the respective lattice results adds
to the evidence that carefully constructed models can capture the essential
features of vertex functions.

However, there are possibly important properties of the three-gluon ver-
tex which can only be probed through explicit calculation. For example, the
aforementioned lattice results for the vertex indicate that its leading struc-
ture becomes negative at some infrared (IR) scale. On the lattice, however,
this behaviour is clearly seen only in two and three dimensions, whereas the
evidence in four dimensions is not yet compelling. On the other hand, a
zero crossing of the tree level dressing has been convincingly identified and
analysed in four-dimensional continuum studies [1, 12, 13]. A sign change
might play an important role when the three-gluon vertex is used for stud-
ies of hadronic observables. Possible investigations in this direction include
studies of mesons beyond rainbow-ladder [14, 15], excited states, glueballs
and hybrids.

The three-gluon vertex is also relevant for other strongly coupled gauge
theories, for example technicolor [16]. In the context of modern techni-
color theories, it is of particular importance to learn about the behaviour
of fundamental Green’s functions in the case of (nearly)-conformal dynam-
ics [17, 18]. Thus far, this influence has only been assessed for propaga-
tors [19–21]. Gaining knowledge on the behaviour of vertex functions near
or inside the conformal window is expected to improve our understanding of
strongly coupled gauge theories in general. In this regard the quark–gluon
vertex is very interesting, as the components of this vertex which break chiral
symmetry are expected to vanish in an exactly conformal theory. However,
through its DSE the three-gluon vertex is a potential driving term for the
quark–gluon vertex.

2. Three-gluon vertex Dyson–Schwinger equation

The three-gluon vertex DSE is Bose symmetric. This is not clearly mani-
fest upon truncation, but can be restored by considering all permutations
with respect to the interchange of external gluon legs. The truncated DSE,



Non-perturbative Features of the Three-gluon Vertex in Landau Gauge 609

wherein non-primitively divergent vertices and two-loop terms are neglected,
is given in Fig. 1.

= + + + +

Fig. 1. Truncated DSE for three-gluon vertex. Dashed lines represent ghosts and
wiggly ones gluons.

2.1. Ghost/gluon input and vertex models

In the Landau gauge, the ghost and gluon propagators are of the form

DG(k) = −
G(k2)

k2
, Dµν(k) = Tµνk

Z(k2)

k2
, (1)

where G(k2) and Z(k2) are, respectively, the ghost and gluon dressing func-
tions and Tµνk = δµν − kµkν/k2 is the transverse projector. Owing to
transversality of the gluon propagator in Landau gauge, only the transverse
components of the three-gluon vertex need to be retained.

In Ref. [13] the coupled system of DSEs for ghost and gluon propaga-
tors as well as the three-gluon vertex was solved. It was found that the
back-reaction of the three-gluon vertex onto the ghost/gluon system does
not change the propagators appreciably. In that study, only the tree-level
structure of the three-gluon vertex was considered. Here, we perform a com-
plimentary investigation: we keep the ghost and gluon propagators fixed,
but retain all tensor structures of the three-gluon vertex. As detailed below,
we quantitatively confirm the dominance of the tree-level tensor component
but also find some interesting features in the sub-leading terms.

In a first step, we construct fit functions for G(k2) and Z(k2) based
on the calculation of [22]. (NB: These fit functions are discussed in detail
in [1]. In [22] only scaling solutions were studied; here, we also consider
the decoupling solutions within the same truncation scheme.) The ghost–
gluon vertex is substituted by its bare form, Γµgh = Γµgh,0, which is justified
from many studies in Landau gauge [10, 11, 23, 24]. For the four-gluon
vertex, a model is used which employs only the tree-level tensor structure:
Γµνρσ4g (p1, p2, p3, p4) = f4g(x) Γ

µνρσ
4g,0 , with x ∼ p21 + p22 + p23 + p24. The

function f4g matches the known behaviour of the tree-level dressing in the
ultraviolet [26, 27] and IR regions [6, 25]. We allow further freedom in the
modelling by shifting the dressing function by a constant: f4g(x)+(0 . . . 0.6).
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3. Numerical results

The chosen conventions for the vertex kinematics are shown in Fig. 1. In
general, one needs three independent variables to describe the three-gluon
vertex. In this paper, we will only show results for the symmetric limit
p21 = p22 = p23 and use correspondingly the Bose-symmetric combination of
momenta, S0 = (p21 + p22 + p23)/6.

3.1. Tree-level dressing functions and running couplings

In the left panel of Fig. 2, we show the tree-level dressing F1 together
with the function G1 which is the projection that has been calculated on the
lattice

G1(p1, p2, p3) =
Γµνρ3g,0(p1, p2, p3)T

µµ′
p1 T νν

′
p2 T ρρ

′
p3 Γ

µ′ν′ρ′

3g (p1, p2, p3)

Γµνρ3g,0(p1, p2, p3)T
µµ′
p1 T νν′p2 T ρρ

′
p3 Γ

µ′ν′ρ′

3g,0 (p1, p2, p3)
. (2)

The functions F1 and G1 look similar and show a sign change at the same
scale p ≈ 1.1 . . . 1.4 GeV. Deviations between F1 and G1 originate from an
admixture of sub-leading components within G1, which contribute at the
10% level [1]. However, the location of the zero crossing is considerably
higher than what has been seen in lattice studies [9, 10]. The dependence
of the zero-crossing location on the four-gluon vertex model is rather mild,
see Fig. 2. However, there is still the possibility of corrections coming from
neglected two-loop terms in the vertex DSE.
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Fig. 2. Left panel: Tree-level dressing F1 and the corresponding projection G1 as
used in lattice studies. Right panel: Running couplings of Eq. (3) for scaling (SC)
and decoupling (DC) scenarios. The bands represent a variation in the four-gluon
vertex model.
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In the right panel of Fig. 2, we show the results for the ghost–gluon and
three-gluon running couplings which are given by

αgh = α
(
µ2

)
Z
(
p2
)
G2

(
p2
)
,

α3g = α
(
µ2

)
Z3

(
p2
)
F 2
1

(
p2
)
, (3)

with α(µ2) = g2(µ2)/4π. The couplings α3g and αgh agree well in the
UV (the slight mismatch comes from the neglect of two-loop terms in the
vertex DSE), but they look quite differently in the IR: there is no unique
non-perturbative definition of the running coupling. In the scaling scenario,
both couplings have an infrared fixed point, in agreement with the exact IR
analysis [6].

4. Conclusions and outlook

We performed an investigation of the three-gluon vertex in Landau gauge
Yang–Mills theory. All relevant tensor structures were back-coupled self-
consistently. We demonstrated within our truncation that the tree-level
vertex dressing function has the expected infrared behaviour in both scaling
and decoupling scenarios. It exhibits a zero crossing whose location is higher
than one would expect from (lower-dimensional) lattice studies. While its lo-
cation is only mildly affected by the details of the four-gluon vertex, missing
two-loop diagrams might still play a larger role.

An open question is therefore the true location of this zero. Thus, future
studies will focus upon resolving these details, along with the impact that
this peculiar feature of the three-gluon vertex has on hadron phenomenology
as well as Green’s functions in the conformal window of strongly interacting
theories.

We acknowledge support by the German Science Foundation (DFG) un-
der project number DFG TR-16, the Austrian Science Fund (FWF) un-
der project numbers M1333-N16, J3039-N16 and P25121-N27, and from the
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