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Using the Dyson—Schwinger approach we investigate Landau gauge
QCD with a relatively large number of chiral quark flavours. A self-consis-
tent treatment on the propagator level enables us to study unquenching
effects via the quark loop diagram in the gluon equation. Above the critical
number of fermion flavours, the non-perturbative running coupling develops
a plateau over a wide momentum range. Correspondingly, the propagators
follow a power law behaviour in this momentum range indicating confor-
mal behaviour. Our value NF'® = 4.5 is strongly sensitive to the details
of the quark—gluon vertex calling for more detailed investigations in future
studies.
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1. Introduction

Walking technicolor models have been introduced to overcome the phe-
nomenological difficulties faced by the early technicolor formulations [1],
see |2] for a recent review. These models exhibit an approximate scale in-
variance over a wide energy range as well as a proximity to an infrared fixed
point, where the gauge coupling is slowly running, or walking. Asymptot-
ically free gauge theories can be utilized to mimic these properties, where
it is expected that QCD with a large number of chiral fermion flavours is a
viable candidate.

* Presented at “Excited QCD 2014”, Bjelasnica Mountain, Sarajevo, Bosnia and Herze-
govina, February 2-8, 2014.

(613)



614 M. HOPFER, R. ALKOFER, C.S. FISCHER

By linking the Green functions of a quantum field theory, the Dyson—
Schwinger framework offers an appropriate non-perturbative tool to explore
a given theory over all energies ranging from the deep infrared to the per-
turbative regime. Since DSEs constitute an infinite set of coupled integral
equations carefully chosen truncations have to be applied in order to treat the
equations numerically. Therefore, a comparison with other non-perturbative
methods is inevitable at some point in order to fine-tune the truncation and
to minimize errors induced by it. Once an appropriate truncation scheme is
established, the Dyson—Schwinger framework is a reliable and robust tool to
explore the theory.

2. The system of coupled Dyson—Schwinger equations

The central object in the following investigation is the quark propagator
DSE depicted in Fig. 1. Intimately connected is the dressed gluon prop-
agator indicated by the wiggly line. By increasing the fermion flavours,

Fig.1. The DSE for the quark propagator. All internal propagators are dressed.
Coloured blobs denote full vertices.

back-coupling effects of quark degrees of freedom on the Yang—Mills sector
become important and simple model descriptions of the gluon propagator
without detailed knowledge of its flavour dependence will prove to be insuf-
ficient. In particular, a naive extrapolation of QCD results to larger flavour
numbers as done in Ref. [3] seems to be questionable. Thus, a self-consistent
incorporation of the corresponding gluon DSE becomes mandatory. In the
following, we outline the coupled system of DSEs and refer to Ref. [4] for
details on the self-consistent treatment.

2.1. The coupled system
The renormalized DSE for the quark propagator is given by!
d*q
(2m)*

S7p) = 2287 0) + 4 216Cr [ 5 L S@I @ m kD). (1)
Here, Z5 and Zip are the renormalization constants for the quark wave
function and the quark—gluon vertex, respectively. The colour trace yields
a factor of Cr = (N2 — 1)/(2N.) and the gluon momentum is defined via

! We follow the conventions and notation of Ref. [5].
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ku = pu—qu- The full quark propagator is given by S~1(p) = —ipA(pz, w2+
B(p?, ), where the dressing functions A and B implicitly depend on the
renormalization scale . The quark mass function is defined via M (p?) =
B(p?, 1?)/A(p?, 1?) and is a renormalization scale independent quantity.
The gluon propagator D*”(p) is included self-consistently by solving the
corresponding DSEs for the Yang-Mills system?, where we employ the trun-
cation scheme proposed in Refs. |5, 7]. Unquenching effects enter the gluon
DSE via the quark-loop diagram as depicted in Fig. 2. One obtains a closed

ey

Fig.2. The truncated DSE for the gluon propagator.

system if the quark—gluon vertex and the three-gluon vertex is specified. As
shown later in Sec. 3, the phase transition is quite insensitive to details of
the three-gluon vertex and the main impact seems to come from different
tensor structures immanent in the quark—gluon vertex. Although this ob-
ject was at the focus of recent investigations [8], it is up to now still too
ambitious to include it in a full self-consistent way due to its complicated
multi-tensor structure. In order to proceed, we defer this desirable but also
highly demanding task to future work and model the quark—gluon vertex
according to Ref. [5]. The formal structure of the gluon DSE is given by

D,y (p) = Z3Dq . (p) + 11" (p) + I (p)

where the gluon self-energy contribution stemming from the quark-loop
reads

N, d*

) =~ 2 [ o DS kp)SG). @
We note that, in general, a truncated DSE system is plagued by spurious
divergencies appearing in the kernels of the loop integrals. Based on a UV
analysis, a safe way to remove these unwanted contributions is to modify
the integral kernels by constructing appropriate compensation terms, cf.
Refs. [5, 7]. For moderate flavour numbers the quark loop diagram is IR
sub-leading. Hence, a direct modification of the corresponding integral ker-
nels is possible. However, as soon as the system approaches Nfcrit, the quark
loop becomes IR enhanced and shows similar IR scaling as the ghost loop.
Hence, subtracting quadratic divergencies directly from the quark loop fails

2 The numerical implementation is detailed in Refs. [4-6].
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if one wants to probe the chiral phase transition. In Ref. [4] we give several
complementary methods which are able to eliminate these artificial contri-
butions in a safe way and which are also used throughout.

3. Results

We present results obtained from a self-consistent treatment of the DSE
system on the propagator level. For the three-point functions models are em-
ployed, where we emphasize the important role of the quark—gluon vertex
tensor structure. As shown in Fig. 3 (a), above Nf'* ~ 4.5 dynamical mass
is no longer generated and the systems enter a chirally symmetric phase. In-
creasing the effective quark—gluon interaction strength using models which
include only the tree-level vertex structure v* has virtually no impact on
the location of the phase transition as shown in Fig. 3 (b). We furthermore
note that different models for the gauge-boson vertex [9] tend to influence
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Fig. 3. Upper panel: The infrared quark mass function M (p?) and the chiral con-
densate (1)) for different flavours N;. Lines are drawn to guide the eye. Right:
Different quark—gluon vertex models which contain only the tree-level structure do
not influence the phase transition. However, additional tensor structure increases
Nt Lower panel: The gauge-boson vertex has minor impact on the location
of the transition and even tends to decrease N, Right: Results obtained with
different bare quark masses. As expected, the phase transition gets washed out.
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N only slightly as detailed in Fig. 3 (c). On the other hand, including
additional tensor structure in the quark—gluon vertex increases Nfcrit consid-
erably. Thus, a detailed knowledge of the quark—gluon vertex is crucial in
order to give reliable predictions for Nfcrit.

The phase transition manifests itself also in a drastic change of the prop-
agators. In Fig. 4 we present results for the non-perturbative running cou-
pling a(p?) = a(u?)Z(p?)G?(p?), the ghost dressing function G(p?), the
gluon propagator Z(p?)/p? and the inverse vector self-energy A~!(p?) for
different flavour values Nt € {0,4,5}. By increasing Nt the coupling is low-
ered, where at Ny < NfC‘Cit this lowering is significant and finally at Nfc’rit
a sudden drop occurs and a plateau is formed which develops over a wide
momentum range. If Nt is further increased, the plateau is successively low-
ered. Thus, within the chirally symmetric phase, a scaling relation between
the Yang—Mills propagators is established, i.e. these objects develop a power
law behaviour in this momentum region as can be seen from Fig. 4 (b) and
Fig. 4 (c). As shown in Fig. 4 (d), the quark wave-function renormalization
is constant in this region as expected from an IR analysis.
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Fig.4. Results for the running coupling a(p?), the ghost dressing function
G(p?, u?), the gluon propagator Z(p?, u?)/p* and the quark wave-function renor-
malization A~1(p?, u?). In the calculations we use a perturbative renormalization
scale of u? =5 x 10* GeV2.
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4. Conclusions

We presented results from an exploratory study of large Ny QCD using
the Dyson—Schwinger framework in Landau gauge. A self-consistent treat-
ment of the corresponding DSEs on the propagator level reveals a transition
to a chirally symmetric phase for merit ~ 4.5. The non-perturbative run-
ning coupling develops a plateau in this regime, where, correspondingly, the
propagators follow a power law indicating conformal behaviour. The criti-
cal fermion flavour number is sensitive to details of the quark—gluon vertex
model, whereas the gauge-boson vertex seems to play a minor role. This em-
phasizes the need for a more complete calculation using a full quark—gluon
vertex in upcoming studies.
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