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We discuss the role and importance of instanton-monopoles in QCD-like
theories with and without matter. Most particularly we focus on SU(2)
super QCD with heavy flavors.
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1. Introduction

Confinement is a problem which has puzzled physicists for many decades
now. Although many models of QCD exist, analytically computable models
of four-dimensional QCD-like theories are scarce and mostly supersymmet-
ric, the best known of which is the Seiberg–Witten theory (SWT) [1]. The
SWT, however, suffers of a severe drawback that it relies heavily on super-
symmetries (SUSY), limiting its usability for non-SUSY theories.

The situation changes drastically if one spatial dimension is sacrificed
globally, and instead of considering theories on R4, one considers theories
on R3×S1 with a stable center and a small compact circle L� Λ−1, where
Λ is the strong scale of the theory. Indeed, there exist both supersymmetric
(SUSY) [2–5] and non-SUSY theories [6–8] over which one has complete
theoretical control. In all of these theories, instanton-monopoles play an
invaluable role. In addition, it has been suggested in [9] that instanton-
monopoles have the potential to cure the divergences in the large orders of
the perturbation theory and may help define the theory properly by doing a
so-called resurgent series expansion. This has sparked some interest in the
community [10–13].
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2. Super QCD

The instanton-monopoles are objects which appear in non-Abelian gauge
theories on R3 × S1, as solutions of the YM equations with fixed non-zero
asymptotic Polyakov loop TrΩ∞ = Tr e

∫
dx4 A4(|x|→∞) 6= 0. The Polyakov

loop (or rather the A4 component which acts like a compact Higgs field)
breaks the SU(N) gauge symmetry to U(1)N−1. In particular for SU(2) the
gauge symmetry is broken down to U(1). As in the 3D Georgi–Glashow
model, the theory has BPS monopoles with an action proportional to the
Higgs VEV S ∝ v, with

√
Aa4

2 = v. In the 4D YM theory on R3 × S1,
the Higgs field is compact and v is gauge equivalent to v + 2π/L. This
distinct feature allows another set of solutions known as Kaluza–Klein, or
KK monopoles with an action S ∝ (2π − vL). At the center symmetric
point v = π/L, the two types of monopoles have the same action S0 = 4π2

g2

which is exactly half the instanton action. In fact, the BPS and the KK
monopole together constitute an instanton [14–16]. It is useful to redefine
b′ = 4π

g2
vL− 4π2

g2
so that the BPS and KK monopole can be associated with

the weights e−S0e∓b
′ respectively. The b′ = 0 corresponds to the center

symmetric point. In addition, the effective 3D U(1) theory can be dualized
to a theory with the Abelian dual field [17] σ (for our notations see e.g.
[5, 18]), where (anti-)monopole charges couple as e±iσ. The BPS and KK
vertices become

[BPS] ∝ e−S0e−b
′±iσ , [KK] ∝ e−S0eb

′∓iσ , (1)

where the sign corresponds to self-dual and anti-self-dual solutions respec-
tively.

In sQCD on R3×S1, the center symmetry is not exact due to the presence
of the fundamental multiplet and Polyakov loop screening is expected. In
contrast to SYM, no mass gap can be generated by the instanton monopoles
due to the presence of the fundamental zero modes attached to the monopole
vertices [5]. To get somewhere, we consider fundamental multiplets with
mass M as a continuos deformation of SYM which corresponds to infinite
M limit.

A low energy effective theory is a theory of the scalar field b′ and the
dual field σ, both of which take values in the root space of the gauge group.
These can combine to form a complex scalar φ = b′ + iσ, which, for the
super YM (SYM) theory, is the lowest component of a chiral multiplet B =
φ +
√
2θλ + . . . 1, where λ is the massless color component of the gaugino

field.
1 The relation between the chiral superfield and the field b′ is actually not linear, due
to the moduli space metric corrections. See the discussions in [5, 18].
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The instanton-monopole resummation in SYM [2, 19] generates a super-
potential of the form ∼ cosh(B), which yields a bosonic potential

∼ cosh(2b′)− cos(2σ) . (2)

In [18] the second term was interpreted as a formation of the magnetic
bions, objects important for IR physics in QCD(adj) [6] and Seiberg–Witten
theory on R3 × S1 [3]. The first term was interpreted as a correlated pair
contribution of a monopole and an anti-monopole, which belong to the sector
of the perturbative vacuum. This term, having a minimum at b′ = 0, is
responsible for stabilizing the center and generating the confining potential
in the Polyakov loop correlator.

In sQCD, however, center symmetry is broken by the presence of the
fundamental multiplets and the identification of the lowest component of
the superfield B is with b′ − δ + iσ, where δ is given by [5]

δ ≈ −2Nf

π

∞∑
n=1

sin

(
nvL

2

)
cos(nφ)K0(MLn) . (3)

Above, φ is the periodicity phase of the fundamental multiplet, i.e. a
constant Abelian holonomy. The effective potential (2) gets modified to
∼ cosh(2(b′ − δ))− cos(2σ). The minimum is attained when b′ = δ, and, for
large M the Polyakov loop average 〈TrΩ〉 ∼ Nfe

−ML. This is completely
natural, as M can be interpreted as the cost of pulling a quark from the
vacuum in order to screen one static quark. In addition, the expression (3)
corresponds to the sum over objects with fundamental charge e±in

vL
2 . The

correlator

〈TrΩ(x) TrΩ(y)〉 ≈ 〈TrΩ〉2 + (. . . )
e−mel|x−y|

|x− y|L
, (4)

where mel is the mass of the b′ field (the electric mass), and dots denote
factors which depend on the renormalized coupling g2 (for exact expressions,
see [5]). The free energy of the heavy quark–anti-quark pair, which is the
logarithm of the above expression, shows a linear raise until some distance
rstring breaking ∝ M , where the linear rise terminates and the free energy
saturates to that of two independent static quarks.

3. Pure Yang–Mills

In the pure YM, no analytically tractable scenario exists from first princi-
ples. The center symmetry is stabilized by large fluctuations and no Abelian-
ization can be argued. Nevertheless, one may try to employ the language
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of the Abelianized theory in order to gain some insight into the pure YM.
In fact, in [18] a mechanism of confinement was proposed which is due to
the formation of neutral bion term ∼ cosh(2b′). This term is second order
in the semiclassical expansion, and it combats the term − cosh b′ cosσ com-
ing from single-monopole terms, which contribute in pure YM as now there
are no gaugino zero modes attached to them. The single monopole term is
always minimized by σ = 0 and prefers the b′ 6= 0, i.e. center symmetry
broken. Moreover, the perturbative potential also prefers b′ 6= 0. What is
strange is that cos(2b′) terms come with a relative negative sign compared
to that of what would be naively expected [18]. Via analytical continuation
in the coupling, the authors of this work were able to argue that the neutral
bions have a center stabilizing contribution even in pure YM. In [20] it was
suggested that this sign is due to the exclusion of the strongly overlapping
monopole–anti-monopole pair, which belongs to the perturbative vacuum.
This effectively introduces a negative fugacity to the neutral bions, so rather
then viewing the YM vacuum as a liquid2 of neutral bions, it is better viewed
as a liquid of instanton-monopoles with a strong repulsing core. This core is
negligible in dilute regimes, but it becomes vital in dense regimes. In addi-
tion, since depending on whether the monopole is a BPS monopole or a KK
monopole, the core size of it grows or gets smaller as we move off-center. As
this happens, the monopoles begin to push back on their anti-monopoles,
trying to pack themselves as tightly as possible. The distance which has
to be cut away is, however, not calculable and it was used as a parameter
in [20]. The electric and magnetic masses and instanton-monopole densities
were then compared to the lattice with order of magnitude agreement. We
should warn, however, that the lattice measurements of instanton-monopole
densities come with large uncertainties and it is unclear if they provide a
decent test of phenomenological models such as the one proposed in [20].
The model is anyway difficult to justify at the scales ∼ Λ as fluctuations are
strong, and mean field cannot be trusted, at least not from first principles.

Let us, nevertheless, give an argument why the instanton-monopoles are
important even for low temperatures. To begin, let us construct an effective
YM theory on R3 × S1 at any compact radius L for distances � L. At
these distances, the theory must be three dimensional. In fact, the minimal
gauge-invariant Lagrangian is3

L

2g2
eff

TrF 2
ij + Λ2LTr (DiΩ)†(DiΩ) + LV (Ω) , (5)

2 In the pure YM, the density of topological objects is not small, so a liquid rather
then gas picture is more appropriate.

3 We demand that the action scales properly with the compact radius of S1, i.e. pro-
portional to L.
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where Ω(x) is the Polyakov loop, V (Ω) its potential, geff is a dimension-
less effective coupling for the 3D components of the long wavelength YM
fields and Λ is some dynamically generated scale required on dimensional
grounds. The potential terms are required in order to have exponential de-
cay of the Polyakov loop correlator of the form e−ΣLr, where Σ is the string
tension. Further, the potential has to have a minimum at TrΩ = 0, so
as to guarantee center symmetry. Because of this, the theory Abelianizes.
Abelianization might be here misleading because, as oppose to the control-
lable theories discussed earlier, the Abelianization energy scale 1/L is much

smaller then the mass gap ∝ e−
(... )

g2(1/L) which is exponentially suppressed. In
YM these two scales are expected to be the same, and no hierarchy of scales
exists. Nevertheless, one can think of deforming YM in such a way so as to
separate these two scales and then take the deformation to zero. The Higgs
fields which get a mass from the kinetic Polyakov loop terms will anyway
be irrelevant for area law, which is the salient feature of confinement. Once
“Abelianization” sets in, the theory can be dualized, and since the UV the-
ory has monopole solutions with proper asymptotic value of the Polyakov
loop, these should appear as cos(nσ) (n-monopole contributions) terms in
the dual theory, gapping the theory completely and inducing the area law
for the Wilson loops.

I am thankful to E. Poppitz for useful discussions. This work has been
supported by BayEFG.
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