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We discuss the behavior of the spectral densities of the non-Hermitian
Wilson Dirac operator. Moreover, we derive compact relations between the
leading order LECs of Wilson χ-PT and observables that can be measured
by a lattice simulation. These relations can be used to determine the LECs
from lattice simulations.
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1. Introduction

Wilson fermions are widely used in high precision lattice studies which
can confront experiments as well as in theoretical studies beyond the Stan-
dard Model. The current supercomputers and the algorithmical develop-
ments have allowed for simulations in the deep chiral regime. Since high
accuracy is sought after in these studies, it is expedient to have the lat-
tice discretization errors under tight analytical control. There has been a
plethora of approaches addressing this issue. The determination of the Low
Energy Constants (LECs) of Wilson chiral perturbation theory [1] has been
attempted analytically [2–8] as well as numerically [9–15] in order to shed
new light on the unphysical phases that one encounters in the chiral limit
at finite lattice spacing. Discretization artifacts have also been considered
for QCD-like theories [16] and they could potentially facilitate technicolor
studies.
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In this study, we incorporate the effect of the three LECs to the leading
order. Our starting point is the Wilson random matrix theory (RMT) for
the non-Hermitian Wilson Dirac operator originally introduced in [2]. We
refer the reader to [17] for a review of the recent developments of Wilson
RMT as well as to [5] for the relevant mathematical developments. In this
paper, we summarize the main results of Ref. [8].

2. Wilson χ-PT in the ε-regime

The drastic step of Wilson to include the lattice discretization of the
Laplacian in order to get rid of the doublers is to give up chiral symmetry.
This has profound consequences for the low energy effective theory of QCD
with the Nf flavor partition function given by

ZνNf
(m) =

∫
U(Nf)

dµ(U) exp

[
ΣV

2
trm

(
U + U−1

)
− a2VW6tr

2
(
U + U−1

)]
× exp

[
−a2VW7tr

2
(
U − U−1

)
− a2VW8tr

(
U2 + U−2

)]
detνU , (1)

wherem is the quark mass, a is the lattice spacing, Σ is the chiral condensate
and V is the space time volume. As is always the case in χ-PT, one needs
to adopt a power counting scheme and, in our case, it is the ε-counting
since it makes direct contact with the Random Matrix Theory [18–20]. In
this regime, the combinations mV as well as a2V are fixed. Note that the
p-regime [1, 4] shares the same potential to lowest order.

3. Extraction of Σ and W6/7/8

At finite lattice spacing, the Wilson Dirac operator is no longer Hermi-
tian. It still retains the very important property of γ5-Hermiticity, D†W =
γ5DWγ5, which has important consequences for the eigenvalues and eigen-
vectors. In particular, the eigenvalues of the Wilson Dirac operator come in
complex conjugate pairs or are real, and only the eigenvectors corresponding
to real eigenvalues have non-vanishing chirality. Generically, the Dirac op-
erator, at fixed index ν will have at least ν real eigenvalues. The additional
eigenvalues originate from the collision of a complex conjugate pair which
may enter the real axis. Because of this, we can define three different eigen-
value densities, the density of the complex eigenvalues, ρc, the total density
of the real modes, ρreal = ρright + ρleft, and the difference, ρνχ = ρright − ρleft
of the density of the right-handed real modes (〈ψ|γ5|ψ〉 > 0) and the density
of the left-handed real modes (〈ψ|γ5|ψ〉 < 0). The difference ρνχ is equal to
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the distribution of the chirality over the real eigenvalues [3]

ρνχ

(
λ̂
)
≡
∑
λ̂k∈R

δ
(
λ̂− λ̂k

)
sign〈k|γ5|k〉 (2)

which can be expressed in terms of the imaginary part of the resolvent

ρνχ

(
λ̂
)
= lim

V→∞

1

π
Im

[
Gν
(
λ̂
)
≡
〈
tr

1

V ΣDW + λ̂11− ıεγ5

〉]
. (3)

This distribution obeys the normalization condition
∫
ρχ(x̂)dx̂ = ν. The

variance of this distribution at fixed index ν, close to the continuum limit,
is determined by the LECs, i.e.〈

x2
〉
ρχ

∆2

â�1
=

8

π2
V a2(νW8 −W6 −W7) , ν > 0 . (4)

Plotting this quantity versus the index ν of the Dirac operator yields both
W8 and the sum W6 +W7.

The average number of additional real modes,

Nadd =

∞∫
−∞

ρadd (x̂) dx̂ , (5)

is also a useful quantity for measuring the strength of the lattice artifacts.
Close to the continuum, the average number of additional real modes scales
as â2ν+2, while it scales linearly with â and becomes independent of ν in
the limit of large lattice spacing, see Fig. 1. Thus, at small lattice spacing
almost all additional real modes come from the sector with index ν = 0 and
are given by

Nν=0
add

â�1
= 2V a2(W8 − 2W7) . (6)

At large volumes, where most configurations have ν 6= 0, the additional real
modes are suppressed. Therefore, “exceptional configurations”, i.e. config-
urations where the eigenvalue λ of the Dirac operator is almost equal to
−m potentially jeopardizing the inversion of the Dirac operator, are not too
much of a problem.

In Fig. 2, we show the projected density of complex eigenvalues,

ρcp (ŷ) =

∞∫
−∞

ρc (x̂+ ıŷ) dx̂ , (7)
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Fig. 1. Log–log plots of the average number of additional real modes versus â8 for
ν = 0 (left plot) and ν = 2 (right plot). The analytical results (solid curves) are
compared to Monte Carlo simulations of RMT (symbols). A non-zero value of â7
yields a saturation at small â8. The difference in the order of magnitude between
the cases of ν = 0 as well as ν 6= 0 is also noteworthy.
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Fig. 2. Analytical results for the projected level density of complex eigenvalues
onto the imaginary axis, ρcp, (left) and for the distribution of the chirality over
the real modes, ρχ, (right) versus MC simulations of Wilson RMT for ν = 1. The
black curve in the left plot is the result in the continuum and agrees very well with
ρcp for small values of the lattice spacing.

for several values of W7 and W8. For small lattice spacing, this distribution
is close to the continuum result making this a good quantity to extract the
chiral condensate via the Banks–Casher relation,

∆
â�1
=

π

ΣV
, (8)

where ∆ is the average level spacing of the imaginary part of the eigenvalues
close to the origin. Moreover, for small values of the lattice spacing, the
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section of ρc parallel to the real axis is a Gaussian of width given by

σ2

∆2

â�1
=

4

π2
a2V (W8 − 2W6) , (9)

serving as a good quantity to extract the combination W8 −W6.

4. Conclusions

We summarized analytical results for the eigenvalue density of the non-
Hermitian Wilson Dirac operator DW in the quenched limit (see [5, 6, 8]).
In a forthcoming publication, we plan to generalize these results to include
dynamical fermions. These analytical results yield simple relations between
the LECs, Σ and W6/7/8, and some observables measurable in lattice sim-
ulations such as the average level spacing of the projected eigenvalues onto
the imaginary axis and the average number of additional real modes, cf.
Eqs. (4), (6), (8), and (9). These relations were obtained for small lattice
spacing |a2VW6/7/8| ≤ 0.1, which is in a domain that corresponds to real-
istic lattice parameters. In particular, simulations with a clover improved
action [14] have shown that this regime is easily accessible. Employing the
parameters of [14], the LECs can be measured with an error estimate be-
tween 1%–10%, which can certainly be improved. Moreover, our analysis
shows that a non-zero amount of additional real modes automatically re-
quires either a non-zero W7 or a non-vanishing W8. However, exactly this
number is strongly suppressed for configurations corresponding to non-trivial
topological configurations. Most of the additional real modes result from
configurations with the index ν = 0. This shows that configurations where
the massive Dirac operator exhibits zero modes are quite rare and will not
have much of an impact in realistic simulations.
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