Vol. 7 (2014) Acta Physica Polonica B Proceedings Supplement No 4

MORDICUS-HW: FRAMEWORK FOR BACK-END
ELECTRONICS CONTROL AND CONFIGURATION*

GEORGIY STELMAKH

Applied Mathematics Faculty, National Technical University of Ukraine
Kyiv Polytechnic Institute, Kyiv, Ukraine
georgiy.stelmakh@cea.fr

(Received August 20, 2014)

The paper addresses the architectural patterns and programming prin-
ciples of Mordicus-hw, a framework designed to optimize collaborative de-
velopment between electronics and software engineers by providing them
with software tools that are adapted to their respective activities. When
designing specific modules, electronics engineers are often led to write small
“quick and dirty” C/C++ programs in order to test and debug their design.
But the actual software that they have developed to run and test their hard-
ware designs is often discarded afterwards because it lacks the re-usability
required by the application modules developed by software engineers. The
Mordicus-hw framework addresses these issues, favours collaborative design
and development between electronics, and software engineers by providing
a simplified, high-level, script-based register programming platform.

DOI:10.5506 / APhysPolBSupp.7.695
PACS numbers: 07.05.Hd, 29.85.Ca, 89.20.Ff

1. Introduction

When designing their specific modules, electronics engineers are often
led to write small “quick and dirty” C/C++ programs in order to test and
debug their design. To compile and run these programs, they need to in-
stall and maintain tool-chains, write makefiles, or learn specialized APIs
that are outside their expertise. The valuable part of their work, i.e. the
actual software that they have developed to test their hardware designs is
often discarded afterwards because it lacks the re-usability required by the
application modules developed by software engineers.

* Presented at the Workshop on Picosecond Photon Sensors for Physics and Medical
Applications, Clermont-Ferrand, France, March 12-14, 2014.

(695)



696 G. STELMAKH

The Mordicus-hw framework has been designed to address this issue and
more generally, to optimize collaborative design and development between
electronics and software engineers by providing the former with a simpli-
fied, high-level, script-based register programming platform and the latter
with modular C++ classes and templates capturing the patterns and best
practices that ensure quality software for handling hardware devices over a
distributed application.

A prototype version [1] was implemented and used in the test bench of
the AGET chip developed for the GET generic electronics for TPC-based
medium size nuclear physics experiments. Mordicus-hw is part of the more
general Mordicus framework designed by CEA IRFU for the development of
TDAQ systems.

2. Register access policies

In Mordicus-hw, the software layers closest to the hardware are modelled
as sequences of register read/write. Registers belong to devices representing
the different electronic entities. Every device is associated to a ‘register
access policy” representing the protocol through which hardware registers
are read from or written to.

The most common way to access a register through software is to have
it mapped over the memory space of the processor, other more complex,
standardized (such as 12C [2]) or proprietary protocols must often be used
for different kinds of electronic devices. The framework architecture confines
the specification of the register access policy to a single Policy class that
basically implements 4 elements that fully characterize the way a register is
accessed:

the type that represents a register reference;

the data type that is read from/written to the register;
the register write function: poke();

the register read function: peek().

3. Remote register access policy

The major goal of Mordicus-hw is to allow users to read from and write
to hardware registers remotely from a general workstation. This calls for
a client—server architecture (Fig. 1) in which a client sends read and write
requests to a register access server on the embedded system containing the
devices hosting the registers. For each request, the server determines the
local policy through which the target registers are accessed before executing
the actual read or write operation (Bus, I2P, AGET or other one protocol).



Mordicus-hw: Framework for Back-end Electronics Control and Configuration697

Network
TCP/IT Device

ICE : Server

Embedded platform
E device #1
; device #2 l
B ——.
12C O

device #3

Middleware T

AGET

Memory-mapped register access

12C register access

Proprietary register access

Fig. 1. Client—server architecture.

From the client on the general-purpose workstation the server on the
embedded system can be accessed though the network (TCP/IP/UDP etc.)
with the help of ICE. The server interacts with the devices in the embedded
system with the help of some protocol, which should be implemented by
firmware engineers, and then it becomes easy to modify any register in any
device. Also, the advantage is that Mordicus-hw allows engineers to easily
upgrade (for example, adding more devices, remove them etc.) their system
without modification their configuration program.

3.1. Internet Communication Engine (ICE)

The mechanism which has been described above is based on the Inter-
net Communication Engine (ICE), developed and maintained by ZeroC [3].
An additional advantage of using such middleware is to allow clients to be
written in programming languages that are not the same as the one used
for servers, for example: client is in Python while embedded server has been
developed in C++.

If there is distributed process and the client—server architecture, there
also should be an interaction between client and server with the help of some
network protocol. And, of course, the best way is to spend as less efforts as
it possible. ICE will help with it.

If there is a client—server model, there also should be the contract be-
tween client and server to determine how they should interact. This contract
is the interface definition. Here comes the ICE to provide cross-platform and



698 G. STELMAKH

cross-language capability (Fig. 2). It generates code for client and server lan-
guages, named the interaction language. Then the only thing that remains
to software engineers is to implement server code.

implemented.

Client s

(V2
(D
ﬁ
S
(>
ﬁ

te
’

qu;fcacf: AN
Interface! AN
Defintion \

K]
Code: Code: Code:
Client Server == SErver:
Language Language Implementation’

Fig. 2. Client-server architecture over ICE middleware.

4. Optimization issues

The main problem of interaction between the client and the target server
is latency. If script contains a huge amount of read/write operations then
loading configuration to the device will take some time.

Bit-field access optimization was actually implemented in Mordicus-hw
resulting in significant acceleration of control sequences. The caching mech-
anism uses C4++ objects which accomplish the single register read in their
constructor and the final write-back in their destructor, doing all the bit-field
access operations in the form of chained method (bit-fields are referenced
here as strings):

Reg.poke("control", 1).poke("status", 11);

In this example, Reg is a register object and the first call to the poke ()
returns the object on which, the subsequent poke () calls are made.

There are some plans for the future to implement the possibility to send
whole script (not by the command) to the embedded system in the single
network operation, and then process it in the embedded system.

5. Conclusions

The basic mechanisms that provide a reliable distributed control and
configuration framework have been already implemented in Mordicus-huw.
However, there are three major goals that should be achieved in future.



Mordicus-hw: Framework for Back-end Electronics Control and Configuration 699

The first goal is to optimize network performance — to implement the
“Batch” objects — series of remote register access instructions (or a whole
configuration script) that would be transported in a single network operation
to the target node and then locally interpreted and executed. This feature
could provide more possibilities for automatically reusing scripts developed
by firmware engineers.

Next step is advanced device parametrization — the possibility to instan-
tiate register devices of any kind with an arbitrary number of parameters.

And the last goal is to implement parameters in more than 64-bit values.
It means the possibility to transfer in a single network operation the whole
configuration database.

REFERENCES

[1] J. Chavas et al., Mdag-D3, a C++ Distributed Driver Development
Framework Used in a Nuclear Physics Experiment, Proceedings of Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC), 2011.

[2] Everything about I2C, http://i2¢c.info/

[3] M. Henning, A New Approach to Object-Oriented Middleware, IEEE Internet
Computing, January 2004, pp. 66-75.



	1 Introduction
	2 Register access policies
	3 Remote register access policy
	3.1 Internet Communication Engine (ICE)

	4 Optimization issues
	5 Conclusions

