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Recent years have seen considerable progress in ab initio QCD calcula-
tions of hadron scattering threshold parameters and scattering phase shifts
in the (elastic) resonance region. The lattice approach is becoming power-
ful enough to even predict states in the heavy quark sector. Methods and
recent results for light quarks and heavy-light quark hadrons are discussed.
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1. Introduction

Experiments measure cross sections and under certain assumptions on
asymptotic behavior, crossing, unitarity and analyticity one derives from
these scattering amplitudes and partial wave phase shifts. Often the out-
come is not unique and there are several solutions. The resulting values
of the scattering amplitude are located along the real s-axis (s denotes the
CMS energy squared). Intricate further analyses then lead to estimates on
resonance pole positions.

Based on concepts of QCD (Quantum Chromodynamics) and the men-
tioned analyticity structures, one may formulate phenomenological models
for the scattering amplitude. The interaction (equivalent to the potential
in the non-relativistic approximation) is parameterized ad hoc or systemati-
cally (like, e.g., in unitarized chiral perturbation theory) and the parameters
are adjusted such as to recover the experimental results.

We assume that QCD is the correct quantum field theory of quarks and
gluons. The continuum theory, however, is not well-defined in the strict
mathematical sense and the theory has to be defined by the limit from a
regularized formulation. In the non-perturbative regime, the lattice regular-
ization [1] turned out to be particularly efficient. It keeps manifest gauge
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invariance, is confining in the strong coupling limit (and presumably so for
all couplings), and allows to implement the path integral quantisation on
computers. Since the early success in the gluonic sector [2], we have learned
how to compute hadron properties for full QCD, treating gluons and quarks
dynamically and interacting.

The central results in Lattice QCD (LQCD) are correlation functions in
Euclidean time and their asymptotic (large t) behavior. Due to the clustering
property of quantum field theory, we can identify the energy values of a
state by its exponential behavior ∼ exp (−Et). The central difference to a
continuum theory is the 4D lattice grid with a non-vanishing lattice spacing a
and a finite size N3

s × Nt (in units of a). The finiteness of the 3D spatial
volume implies discreteness of the energy levels with gaps of O(2π/L) for
L = aNs.

For ground state spectroscopy, one computes the lowest energy level; this
is straightforward if one can go to large enough t (limited by statistics). For
physical mass parameters only the proton and the pseudoscalar mesons are
stable (considering only strong interactions) and thus ground states in the
respective quantum channels. All other baryons and mesons may decay if
the kinematics allows it. In the lattice universe, we may change masses by
hand and have also further kinematic restrictions due to the finite volume,
such that some decays may be impossible, e.g., the meson–meson threshold
might move to values above a resonance, which may become a bound state.

In general (if there is a mass gap), the correlation function will be a sum
of exponential terms corresponding to a tower of energy levels. The spectral
density becomes a sum of δ-functions〈

X(t)X†(0)
〉
≡ C(t) =

∫
dω ρ(ω)e−ωt →

∑
i

wie
−Eit . (1)

The discrete energy levels have to be related to continuum QCD. One pos-
sibility is to use the above mentioned models and put them on a lattice,
find energy levels and compare them with the LQCD derived values. Like
general inverse scattering problems, this does not necessarily leads to unique
and correct continuum results. An alternative approach relates the discrete
spectrum directly to infinite volume continuum values of the phase shift at
discrete points [3, 4]. This relationship needs further assumptions (e.g., lo-
calized interaction regions and for single channel situations elasticity) and
the obtained values are sparse.

This approach has originally been formulated in the rest frame for two
interacting mesons of equal mass. As can be seen from Fig. 1, for typical
lattice sizes of, e.g., 3 fm and a pion mass of 250 MeV, we have Lmπ ≈ 3.8.
In a lattice simulation with such parameters only two energy level would
be in the neighbourhood of the resonance leading to only two relevant data
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Fig. 1. The left-hand plot shows the energy levels for (spatial) lattice size L (in
units of m; dashed curves: non-interacting, full: interacting)), the middle and the
right-hand plots show the spectral density and phase shift of the J = 1 toy example
resonance (s denotes the CMS energy squared in units of m2). The vertical lines
and the points indicate the expected results of a simulation for a lattice size L = 2.7.

points for the resonating phase shift. The generation of gauge field config-
urations with dynamical gluons and quarks is quite expensive. Therefore,
one wants to exploit these configurations as much as possible. Working with
meson–meson interpolators with total non-vanishing 3-momentum (in “mov-
ing frames”) leads to further energy levels [5, 6]. Also other approaches modi-
fying boundary conditions have been proposed [7, 8]. Eventually, one cannot
avoid working on lattices of different spatial volumes. The lattice geometry
and the parameters of the simulation (and the QCD dynamics) determine
the energy levels — one cannot fix the energy of the meson–meson system
like in an experiment.

One should also point out a danger of misconception. The lattice in-
terpolators X in (1) have to have the correct quantum numbers and total
momentum (with components that are multiples of 2π/L) and there are
many choices obeying these conditions. They provide only the basis set for
the “physical” states. A correlation matrix C(t) of a set of such operators
can be expressed in terms of eigenstates

C(t)ij =
〈
Xi(t)X

†
j (0)

〉
=

∑
n

〈Xi|n〉e−Ent
〈
n|X†j

〉
. (2)

Assuming that the set of interpolators is complete enough, the eigenstates
will represent “physical” states of the finite volume system. They will be com-
posed of combinations of lattice interpolators with overlap factors 〈Xi|n〉.
As suggested [3, 9–11], solving a generalized eigenvalue problem for C(t)
leads via the asymptotic behavior of the eigenvalues λn(t) ∼ e−Ent to the
energy levels.



112 C.B. Lang

The lattice interpolators are constructed as irreducible representations
of the lattice rotation group Oh (for the rest frame) or corresponding little
groups (for moving frames). Often one uses smeared quark sources in order
to improve the signal. A particularly useful method is using a set of eigen-
vectors of the 3D lattice Laplacian in the source (and sink) time slices. The
quark correlators, called in this context perambulators, are then constructed
between these source vectors. This method has been called distillation [12]
and is very versatile, allowing a posteriori construction of hadron interpola-
tors; it is also efficient for computations involving backtracking quarks like
in pair annihilation diagrams in (fully or partially) disconnected graphs.

2. Examples

I will discuss some examples for hadron–hadron scattering, assuming the
process is, to good approximation, elastic in the studied energy region. Up
to now, there are only very few numerical LQCD studies for coupled channel
processes and the underlying theory is being developed [13–16].

2.1. The prototype resonance ρ

This is the most elegant1 resonance: ππ in p-wave, essentially elastic,
with experimental mass of 775 MeV and a width of 149 MeV. Traditionally,
the ρ has been studied in the single hadron approximation, i.e., using quark–
antiquark interpolators only. This may be justified for large pion masses and
on coarse lattices, such that the lowest ππ level (note that the pions have
to have non-vanishing relative momentum in order to contribute to p-wave
scattering) lies above the resonance region of the ρ, i.e., at very small values
of Lmπ in Fig. 1. In this approximation, no signals for the π(1)π(−1) (the
back-to-back momentum is given in units of 2π/L) were found.

In Ref. [17], the system was studied including the 2-meson interpolators;
altogether 18 interpolators (15 of quark–antiquark type and 3 ππ inter-
polators) were considered in the correlation matrix. Different numbers of
distillation sources were used in the construction of the hadron operators.
Since only the two lowest energy levels were considered statistically reliable,
also moving frame operators were used. The gauge ensemble was generously
provided by the authors of [18] and had two mass degenerate quarks at pion
mass of 266 MeV, lattice spacing 0.1239 fm and lattice size 163×32. Figure 2
shows the resulting values for the phase shift and a Breit–Wigner fit to these
points. The width comes out smaller than in experiment, due to the smaller
phase space (larger pion mass), but the coupling gρππ ≈ 5.61(12) is close to
the experimental value 5.96.

1 Ludwig Boltzmann: “Elegance should be left to shoemakers and tailors”.
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Fig. 2. Left-hand side: Plot of the ππ p-wave phase shift obtained for mπ ≈
266 MeV in [17]. Right-hand side: The same obtained by [19] for mπ ≈ 391 MeV
and several lattice sizes (figure from [19]).

Meanwhile, there has been considerable progress and the right-hand side
of the plot shows recent results obtained at a higher pion mass for several
lattice volumes [19].

2.2. Kπ scattering

Moving frames for two mesons with different mass are more intricate.
One needs to carefully choose the correct irreps of the corresponding little
groups [22–24]. The first LQCD-based determination of the I = 1

2 p-wave
phase shift in the region of the resonance K∗(892) used such tools [20, 21].
The lattice parameters were the same as discussed above for the ππ system.
Figure 3 summaries the results obtained for s- and p-waves in both isospin
channels. In that study, the inelastic Kη channel was not considered. In
more recent work [25], the coupled system was investigated.

2.3. Negative parity Nπ s-wave scattering

In the channel with JP = 1
2

−, there are two low-lying resonances: N∗(1535)
and N∗(1650) coupling mainly to Nπ in s-wave. Above the 10% level, there
are also further inelastic decays N∗(1535) → Nη,Nππ and N∗(1650) →
Nη,ΛK,Nππ. Earlier lattice simulations of this channel that have de-
termined ground state energy levels and further excitations included only
3-quark interpolators [26–28]. In these studies, two low-lying energy lev-
els have been identified and assigned to the two negative parity resonances.
However, the lower of the two levels had a tendency to lie below theN∗(1535)
(see the middle plot of Fig. 4).

In a first LQCD study of this Nπ scattering process [29], the inelastic
contributions were neglected. The number of graphs (Wick contractions) in
this (4+ 1)→ (4+ 1) fermion system is considerably larger that for meson–
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Fig. 3. Kπ phase shift results for s- and p-waves and isospin I = 1
2 and 3

2 compared
with experiments (figure from [20, 21], where there are also the references to the
experiments).

Fig. 4. The plot compares the experiment with the results obtained from the single
hadron approximation (middle) and from the full meson–baryon simulation (right-
hand column). The broken lines show the Nπ threshold and the arrows indicate
the expected mass shift due to the (compared to Nature) higher pion (and quark)
mass.
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meson scattering, including the notoriously demanding backtracking quark
line contributions. There are 2 terms for 3→ 3 quarks (the nucleon), 4 terms
for 3 → 5 and 5 → 3 fermions (N → Nπ and Nπ → N) and 19 terms for
5 → 5 fermions (Nπ → Nπ). We, therefore, used the distillation method
[12] for determining the cross-correlation matrix for up to nine interpolators.
The configurations were the same as discussed for ππ scattering, with mN ≈
1068 MeV and a pion mass of 266 MeV (for the uncertainties, see [29]).

We found a significant change of the energy spectrum (see Fig. 4). The
lowest level now is the expected energy level closely below threshold (which
approaches the threshold from below in the infinite volume limit) and the
two higher lying levels we associated with N∗(1535) and N∗(1650).

2.4. The heavy-light meson Ds

We studied the three Ds quantum channels JP = 0+, 1+ and 2+ where
experiments have identified the charm-strange states D∗s0(2317), Ds1(2460),
Ds1(2536) near the DK and D∗K thresholds, and D∗s2(2573). This behavior
was not reproduced in quark models or in earlier LQCD calculations. In
both approaches, the bound states moved above the threshold becoming
resonances [30–36]. These calculations were in the “single hadron” approach,
i.e., without considering the two-meson channels. As had been pointed out
already earlier [37], threshold effects may be critical, though.

We, therefore, considered correlation functions for sets of qq operators
and, for JP = 0+, 1+, also the DK and D∗K meson–meson interpolators
and determined for these cases values of the elastic scattering amplitude
[38, 39].

Fig. 5. Comparison of the experiments with lattice results for mπ ≈ 156 MeV. The
residual differences are due to finite volume and discretisation effects.
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For this study also another ensemble of gauge configurations with Nf =
2 + 1 dynamical quarks and generated by the PACS-CS Collaboration [40]
was used. It has lattice spacing 0.0907 fm, size 323 × 64 and a pion mass of
156 MeV. Sea and valence quarks are non-perturbatively improved Wilson
fermions. Here, we used the stochastic distillation method [41]. The light
and strange quarks were dynamical, the charm quark treated as a valence
quark. For the K, we used the relativistic dispersion relation and for D,
D∗ the Fermilab method [42, 43] like in [44]. We determined bound state
parameters and found good agreement with experiments, see Fig. 5.

I want to thank my collaborators in the mentioned projects: Luka Leskovec,
Daniel Mohler, Sasa Prelovsek, Valentina Verduci and Richard Woloshyn,
for many years of fascinating work. This work is supported in part by the
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