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We discuss a method to extract the Källén–Lehmann spectral density
of a particle (be it elementary or bound state) propagator and apply it to
compute gluon spectral densities from lattice data. Furthermore, we also
consider the interpretation of the Landau-gauge gluon propagator at finite
temperature as a massive-type bosonic propagator.
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1. Spectral densities

In general, an Euclidean momentum-space propagator G(p2) ≡ 〈O(p)
O(−p)〉 of a (scalar) physical degree of freedom ought to have a Källén–
Lehmann spectral representation

G
(
p2
)

=

∞∫
0

dµ
ρ(µ)

p2 + µ
. (1)
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The knowledge of the spectral function ρ(µ) is useful for, amongst other
things, getting the masses of the physical states described by the operator O.

Here, we describe a method to compute the spectral density given a
numerical estimate of the propagator, computed using e.g. lattice techniques.
Note that Eq. (1) is equivalent to a double Laplace transform G = L2ρ̂ =
LL∗ρ̂, where (Lf)(t) ≡

∫∞
0 dse−stf(s); the (double) inversion is then a

notorious ill-posed problem, due to the exponential dampening.
For positive spectral functions, a popular approach is the maximum en-

tropy method [1]. An alternative approach, aiming to compute spectral den-
sities not necessarily positive, has been developed by some of us [2], based
on the Tikhonov regularization supplemented with the Morozov discrepancy
principle.

Specifically, setting Di ≡ D(p2i ) and assuming we have N data points,
we minimize

Jλ =

N∑
i=1

 +∞∫
µ0

dµ
ρ(µ)

p2i + µ
−Di

2

+ λ

+∞∫
µ0

dµ ρ2(µ) , (2)

where we use lattice data in momentum space for the gluon propagator com-
puted in a 804 volume, with β = 6.0 (Wilson gauge action) [3]. In Eq. (2),
λ > 0 is a regularization parameter designed to overcome the ill-posed na-
ture of the inversion. We choose λ by means of the Morozov principle: the
optimal value λ is such that the quality of the inversion is equal to the error
on the data, i.e. ||Dreconstructed −Ddata|| = δ, where δ is the total noise on
the input data. The IR regulator (threshold) µ0 will be determined self-
consistently by means of the optimal (Morozov) regulator λ: we take the
minimal value for λ(µ0) that can be reached by varying µ0.

The minimization of (2) proceeds through a linear perturbation of ρ and
imposing the vanishing of the variation of Jλ

N∑
i=1

 +∞∫
µ0

dν
ρ(ν)

p2i + ν
−Di


︸ ︷︷ ︸

≡ci

1

p2i + µ
+ λρ(µ) = 0 (µ ≥ µ0) . (3)

The Källén–Lehmann inverse can be computed explicitly

ρλ(µ) = − 1

λ

N∑
i=1

ci
p2i + µ

Θ(µ− µ0) , (4)

where Θ(·) is the Heaviside step function. We get a linear system for the
coefficients ci

λ−1Mc+ c = −D (5)
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with

Mij =

+∞∫
µ0

dν
1

p2i + ν

1

p2j + ν
=

ln
p2j+µ0

p2i+µ0

p2j − p2i
. (6)

In Fig. 1, we plot the spectral density and, as a check, the reconstructed
propagator which can be easily computed combining Eqs. (4) and (1). In this
case, we have two minima for λ(µ0), at µ0 ≈ 0.03 GeV2 and µ0 ≈ 0.16 GeV2.
We display the results for both values. We conclude that the gluon spectral
density is indeed a nonpositive quantity. This is not surprising, since the
gluons are not part of the physical spectrum [4]. In the near future, we plan
to apply this method to glueballs1 and other physical degrees of freedom.
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(a) Spectral density. (b) Reconstructed propagator.

Fig. 1. Results for the gluon spectral function and the reconstructed propagator
vs. the input data. We refer to the main text and [2] for additional details.

2. Gluon mass at finite temperature

In this section, we briefly describe a recent investigation by some of us [6],
where we address the interpretation of the Landau gauge gluon propagator
at finite temperature as a massive-type bosonic propagator. For such a goal,
we consider a Yukawa-type propagator

D(p) =
Z

p2 +m2
, (7)

where m is the gluon mass and Z
1
2 the overlap between the gluon state and

the quasi-particle massive state.

1 See [5] for a preliminary study of glueball spectral densities.
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At finite temperature, the Landau gauge gluon propagator is splitted
into two components

Dab
µν (q̂) = δab

(
PT
µνDT(q4, ~q ) + PL

µνDL(q4, ~q )
)
, (8)

where DT and DL are the transverse and longitudinal propagators respec-
tively.

The lattice setup for the simulations at finite temperature considered
here is described in Table I. The surface plots of the two form factors can
be seen in Fig. 2. For further details, see [6].

TABLE I

Lattice setup used for the computation of the gluon propagator at finite tempera-
ture. Simulations used the Wilson gauge action; β was adjusted to have a constant
physical volume, Ls a ' 6.5 fm. For the generation of gauge configurations and
Landau gauge fixing, we used Chroma [7] and PFFT [8] libraries.

Temp. β Ls Lt a 1/a
[MeV] [fm] [GeV]

121 6.0000 64 16 0.1016 1.9426
162 6.0000 64 12 0.1016 1.9426
194 6.0000 64 10 0.1016 1.9426
243 6.0000 64 8 0.1016 1.9426
260 6.0347 68 8 0.09502 2.0767
265 5.8876 52 6 0.1243 1.5881
275 6.0684 72 8 0.08974 2.1989
285 5.9266 56 6 0.1154 1.7103
290 6.1009 76 8 0.08502 2.3211
305 6.1326 80 8 0.08077 2.4432
324 6.0000 64 6 0.1016 1.9426
366 6.0684 72 6 0.08974 2.1989
397 5.8876 52 4 0.1243 1.5881
428 5.9266 56 4 0.1154 1.7103
458 5.9640 60 4 0.1077 1.8324
486 6.0000 64 4 0.1016 1.9426

A simple definition for a mass scale associated with the gluon propagator
can be given by

m = 1/
√
D (p2 = 0;T ) . (9)

Our results for such a mass scale are shown in Fig. 3.
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(a) Transverse propagator. (b) Longitudinal propagator.

Fig. 2. Components of the gluon propagator as a function of momentum and tem-
perature.
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Fig. 3. Electric and magnetic mass defined from zero momentum propagators.

A more realistic value for the gluon mass can be obtained by a fit to the
lattice data in the infrared region using the anzatz described in Eq. (7). It
turns out that the transverse form factor is not described by a Yukawa-type
propagator. Therefore, one concludes that DT does not behave as quasi-
particle massive boson for T < 500 MeV. In what concerns the longitudinal
form factor, we report the values of Z(T ) and mg(T ) in Fig. 4.

We observe that both mg(T ) and Z(T ) are sensitive to the confinement–
deconfinement phase transition; the data suggests that the phase transition
is of first order. Below Tc, the gluon mass is a decreasing function of T ,
whereas it increases for T > Tc. Furthermore, the gluon mass follows the
expected perturbative behaviour for T > 400 MeV.
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Fig. 4. Z(T ) andmg(T ) from fitting the longitudinal gluon propagator to a Yukawa
form. The curve in the lower plot is the fit of mg to the functional form predicted
by perturbation theory.
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