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The description of — in a Hermitian setting — seemingly nonlocal and
nonperturbative phenomena such as confinement or superconductivity is
most conveniently performed by generalizing quantum theory to a non-
Hermitian regime where these phenomena appear perturbative and local.
The short presentation provides a clue how this can be done on the basis
of Lorentz covariance while preserving the analyticity of the theory. After
deriving with the help of Lorentz covariance a quantum scalar product
without making any use of metric or complex conjugation, we sketch how
the formalism of scattering theory can be extended analytically to a non-
Hermitian regime.
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1. Introductory remarks

To us, there are mainly three points becoming gradually clear after about
20 years of intensive reseach effort to generalize quantum theory (QT) to a
non-Hermitian (NH) setting (see e.g. Refs. [1-14] and references therein):
(1) The description of physical systems within an idealized Hermitian setting
is at odds with experimental reality; (2) Various strong statements' made
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L E.g. that confinement cannot be generated by scalar bosons or that the quartic cou-
pling of a Higgs scalar has — due to stability reasons — to be positive [4].
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naively within a Hermitian setting do not hold in an NH setting; (3) The
advanced sector of NHQT required by Lorentz covariance [2] and analyticity
is in a Hermitian setting obtained by applying to the retarded sector a
Hermitian conjugation joint with a non-local, non-analytic metric [15].

2. Setup of non-Hermitian Quantum Theory (NHQT)

2.1. Covariance and conservation of complex energy in the complex plane

In the first place, one should recall that the relativistic Klein—Gordon
equation being essentially the wave equation is a differential equation of sec-
ond order in the time coordinate which can be decomposed |2, 3, 6] into two
first order equations. For a — without loss of generality — time independent
eventually NH Hamilton operator H, we have

0= (n? o - 1) o) = (in g 1) (in g+ 20 lwto) . ()

The right solution of the Klein-Gordon equation [ (t)) = |1 (F) (£))+ | () ()
is therefore obtained by superimposing additively the solutions |¢)(*)(¢)) and
1) (t)) of the retarded and advanced Schrédinger equation, respectively

0:<zﬁa—H> ’@b > O:(zh+H) ’«p > 2)

The respective left eigen-solution (1)) ()| and (1)(=)(t)| of these two equa-
tions is the right eigen-solution |(*)(¢)) = () (t)|T and | (t)) =
() (#)|T of the respective so-called “transposed retarded” and “transposed
advanced” Schrodinger equation (here ‘T’ denotes transpositon!), i.e.

0= <m§t —HT> ‘W)(t)) . 0= (mgt +HT> ‘1/)(’)@)) NG

In using the notation w(Ri)(z, t) = (z|p®(t)) = (vP) (t)]2)T and wéi)(z, t)
= (z|p®) (1)) = (v F)(1)]2)T, the non-relativistic one-dimensional limit of
Egs. (2) and (3) reads in spatial representation

9 G
tihg vy (2,0) = (‘maﬁ + V(z)> Vi (2,1), (4)

sing o760 = (g VOG0, )
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On the basis of these equations, it is easy to show that there hold the fol-
lowing two continuity equations

0p M (z,t) 9D (z1) 9p I (zt)  9i(z0)

a9z ot 0z (6)

for the retarded and advanced energy densities p(*)(z,t) and p(~)(2,t) and
the respective energy current densities j(&) (z,t) defined as follows:

PE () =7 (2 )" o (2,0), (7)
1
() (5 )
(+) (F)(, AT 72
F om0 () Oy (2 )T WP
X<L S VA B 9. am'm 0]
(8)

The continuity equations (6) can be integrated along some suitable contour
connecting two points z; and zs in the complex z-plane yielding

o T
I (£) — _ () _ ()
- / dzp® (z,1) = — (79 (22,0) ~ 1) 0,1)) (9)

Any integration contour with j&)(zo,t) = j&)(2,t) defines an eventually
NHQT with a time-independent scalar product |1, 6]

z9 z2
/dzp(i)(z,t) = /dzwI(jF)(z,t)T . w&i)(z,t) = const (10)
Z1 Z1

replacing the well known scalar product of Max Born.

2.2. Elements of non-Hermitian scattering theory

Without loss of generality, we consider now one-dimensional scattering
at a time-independent eventually NH potential V' (z). For such a potential,
the Schrédinger equations (4) and (5) can be solved by a separation ansatz
Ui (2,1) = exp(£EL/(ih)) ¢ (=) and ) (2,1) = exp(£Et/(ih)) o (=)
yielding the time-independent Schrédinger equations

2 2
BAOC) = (~garpm VD) 606, 1)

2 2
EAP6) = (~gppm +VET) o0, (12)
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and according to Egs. (8), the time-independent energy current densities

(£) (F) N\T 2
(&) T h? 8¢7R (2) _ 6¢L (2) h (£)
7R) = +ih <¢L (2) 2M 0z 0z ¢ (2)
(13)

Here, we will discuss merely retarded scattering. Hence, we use in the follow-
ing the abbreviations j(z) = j(P)(2), ¢(H)(2) = gbg)(z), P (z) = gzb(L_)(z),
o) (2) = &ﬁg)(z)/@z and ¢()(2) = 8¢£_)(z)/8z. Advanced scattering
results are nonetheless easily derivable from their retarded counterparts.
In the region of vanishing potential, i.e. V(z) = 0, the solution of the
Schrodinger Egs. (11) and (12) is of plane-wave type with kg = \/2M E/h?

¢ (2) = exp(ikoz) F) (ko) + exp(Fi koz) ¢F) (—ko), (14)
h? h?
= 3 = o (6067 e -6 T S 60

B hk B hk
= ko)™ - T D lhko) = (ko)™ T P (ko). (15)

In the following, we want to consider retarded scattering between two points
z< and z- of vanishing potential, i.e. V(z<) = V(2>) = 0. Wave functions
and their derivatives at z~. and z. are related by transfer matrices TE)

\ /% o (z5) _ ( Tl(li) T1(2i) ) % o (z2) (16)
+ + ’
%ﬁf)(i) (Z>)/ T2(1 : T2(2 ) % ¢(i) (Z<),

or, alternatively,

e e
() ()- (G &) () w

with
+ ikoz hko + ikoz
eg ) = eFthozc ﬁci)(l{o), ij0>”M —ko), (18)
) hk
agi) = e*ihoz> ﬁo cgi)(ko), = Tikoz< \/ —ko). (19)

Simple algebra establishes the following relation between T() and T&)

_ Vo [ 1 +L1 1 1 1
TE) =1, 4 Y0 iko T 1 — (2
R Fi ( 2) +iko Fiko ) VEo (20)
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12 is the 2 X 2 unit matrix. Moreover, we assume the energy current densities
at points z< and z~ to be equal, i.e. j(z<) = j(2>), yielding (see Eq. (15))

e (ko) - e (ko) — e
B hko (s B ko (s
= (ko)™ - A e (ko) = ) (= k)T YA ko), (21)
or, equivalently, ag_)T : agﬂ - eé_)T . egﬂ = eg_)T . e§+) — a7t a§+).
Inspecting eg_)T : e§+) + eé_)T . eéﬂ =a?7T. agﬂ + a;_)T . a;+), we can

define the S-matrix S™) and transpose of its inverse S() = (S(H)=1T by

+ + + + +
() () (5 B (5 e
5 €9 So1 S59 €9

Making use of Eq. (17) and S()TSH) = 1, we obtain

() o) =(F)T\ ! = () () —1
g — ( St S ) — ( 1(?:) > T1(2 )T2(2) (23)
+ + ~ o~ ~ - )
S5 Sk ~Ty) Ty T
= (4)—1 = () —1,7(%
gEFT _ < ST ST ) B Ty i Ti(2) (24)
- T T = (4) m(£) -1 = (F)T\ ™ :
st sy T (1))

The transmittivities 77 and 75 and reflectivities Ry and Ry are therefore
T o+ ~(1)=1 (m(—)T) L = ()T () 1
T = 1_RIZS&) S£1):T1(1) (Tl(l) ) :<T1(1) T1(1 )> , (25)
)T o+ =()T\ " A (+)-1 = (4) ()T
T = 1_R2:S§2) 552): <T2(2) ) T2(2) = <T2(2)T2(2) ) - (26)

3. Simple application: scattering at a delta-potential

For the scattering at a delta-potential V(z) = g §(z — a) with g being
eventually complex-valued, we choose z~ = a + 0 and . = a — 0. The
delta-potential is represented by the following transfer matrices

1 0 1 0
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Invoking these transfer matrices into Eq. (20), we obtain

) — T _ ()T () [ 2M
Ty’ =Ty —(511 ) (S hzko ﬁQkﬁo (28)

L oM 20
T = 1= ()= () = ek I\ ek

and, consequently,

Ty =To=1-Ri=1-—Rp

1 oM oM 1+l oM oM\ |
2 \ B2ko 7\ B2y 2 \ n2ko 7\ B2y

This is — without involving any complex conjugation — the standard result
which will be for one scattering channel obviously real-valued, positive and
within the invervall [0, 1], if (Mg/ko)? is real-valued and non-negative.
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