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Using the framework of the Covariant Spectator Theory (CST), we
are developing a covariant model formulated in Minkowski space to study
mesonic structure and spectra. Treating mesons as effective qq̄ states, we
focused on the nonrelativistic bound-state problem in momentum space
with a linear confining potential. Although integrable, this kernel has sin-
gularities which are difficult to handle numerically. We reformulate it into
a form in which all singularities are explicitely removed. The resulting
equations are then easier to solve, and yield accurate and stable solutions.
In the present work, the same method is applied to the relativistic case,
improving upon the results of the one-channel spectator equation (1CSE)
presented in some previous works.
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1. Introduction

Due to the complex nature of hadronic matter, it is challenging to find
a comprehensive description of how quarks and gluons combine to form
hadrons. In particular, with the upcoming intense experimental activity
dedicated to search for new exotic states, a better understanding of the
conventional qq̄ mesons is needed.

Phenomenological models that establish a link between lattice QCD and
experimental data are important because they could help to reveal the con-
nection between the hadronic mass spectrum and the underlying quark–
gluon dynamics.
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In continuation of previous work by Gross, Milana and Savkli [4, 5] using
CST, we are developing a formalism that has potential to properly describe
both light and heavy mesons, in a unified way. Moreover, the model is
self-consistent because the quark self-energy is calculated from the same
kernel that describes the quark–antiquark interaction. Recently [6, 7], the
dressed quark mass function and pion electromagnetic form factor in impulse
approximation have been calculated using this model and it has been shown
that the model is consistent with the requirements of chiral symmetry [8].

This work is the first application of the results of [2] to the 1CSE. In [2],
we address the problem of solving the momentum-space CST equations with
the linear interaction in its nonrelativistic limit, in which the 1CSE becomes
the Schrödinger equation, and develop a method to explicitely remove all
the singularities of its kernel.

2. CST bound-state equation

The CST bound-state equation emerges when we approximate the full
Bethe–Salpeter (BS) equation for the vertex function Γ ,

ΓBS(p, P ) = i

∫
d4k

(2π)4
V(p, k;P )S1(k1)ΓBS(k, P )S2(k2) , (1)

with total momentum P and relative external and internal momentum p
and k, respectively. Si(ki) = (m0i − /ki + Σi(/ki) − iε)−1 (i = 1, 2) is the
dressed propagator and Σi(/ki) is the self-energy of quark i. This approxi-
mation consists of keeping only the pole contributions from the propagators
at ki0 = ±Eki = ±(m2

i + k2)1/2, when the integration over k0 is performed.
If we symmetrize the contributions from both complex half-planes, we ob-
tain an equation that is a three-dimensional reduction of Eq. (1) and has
four contributing diagrams, depicted in Fig. 1, each arising from placing one
particle on its positive/negative energy mass-shell. When external legs are
systematically placed on-shell in the diagrams of Fig. 1, a closed set of cou-
pled equations emerges, the four-channel spectator equation (4CSE). How-
ever, to study heavy–light quark systems, with a large bound-state mass,
it is sufficient to consider only the positive-energy pole contribution from
the heavier particle 1, for m1 > m2. The resulting equation, the 1CSE, is
represented in Fig. 2 and can be written as

Γ1CS(p, P ) = −
∫

d3k

2Ek1(2π)3
V (p, k;P )Oi1Λ1

(
k̂1

)
Γ1CS(k, P )S2(k2)Oi2 ,

(2)
where Oi1 and Oi2 are Dirac matrices of type i (scalar, vector, pseudoscalar),
V (p, k;P ) is the momentum-dependent part of the interaction, Λ1 is the
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positive-energy projector and k̂1 = (Ek1 ,k) is the on-shell momentum of
particle 1.
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Fig. 1. Contributing diagrams for the 4CSE. A cross on a quark line indicates that
only the positive-energy pole contribution of the corresponding propagator is kept
in the loop integration, a cross inside a square refers to the respective negative-
energy pole.
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Fig. 2. Diagrammatic representation of the 1CSE.

3. Linear confining kernel

In this preliminary work, we are interested just in the linear confining
part of the potential

Ṽ (r) = σr . (3)
A covariant, relativistic generalization of this potential is

VL(p, k) = VA(p, k)− 2Ep1(2π)3δ(p− k)

∫
d3k′

(2π)32Ek′1
VA
(
p, k′

)
, (4)

with VA(p, k) ≡ − 8πσ

(p− k)4
. In [2], we show that although this kernel is sin-

gular when k = p, when applied to any function of three-momenta, F (p,k),
one ends up with a Cauchy principal value integral (“P

∫
”)∫

d3k

(2π)32Ek1
VL(p, k)F (p,k) = P

∫
d3k

(2π)32Ek1
VA(p, k) [F (p,k)− F (p,p)] .

(5)
We also show in [2] that the integrand of Eq. (5) can be rearranged by
means of a subtraction into two parts, one that is no longer singular and
another one that contains a principal value singularity that can be integrated
analytically. Besides treating the singularity, we also perform a partial-
wave decomposition of Eq. (2) and derive a singularity-free equation for an
arbitrary partial wave `. Our results extend those of [3] in which only the
S-wave case was computed.
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4. Numerical results

In order to solve Eq. (2), we use a helicity representation (with helic-
ity λ = ±1/2) for the 1CSE and expand it in terms of ρ spinors uρi (p, λ)
(ρ = ±) defined consistently with [3]. The most general form of the 1CSE
for arbitrary interaction vertices and interaction kernel is(

Ep1 − ρ′Ep2
)
Ψ1ρ′(p)−

∑
ρ

∫
d3kV (p, k)

(2π)34Ek1Ek2

×

(2λ)δρ′+
∑
λ1

Θ++
1,λλ1

(p, k)(2λ1)
δρ+Θρρ

′

2,λ1λ
(k, p)

Ψ1ρ(k) = µΨ1ρ′(p) , (6)

where Ψ1ρ(p) ≡
ρΓ ρ(p)

Ep2 − ρp20
, and Γ ρ is obtained from the contraction of

Γ (p) = Γ1(p)γ
5 + Γ2(p)γ

5
(
m2 − /p2

)
(7)

with the ρ spinors. In the 1CSE, (7) is the most general form of the vertex
function for a pseudoscalar particle.

Finally, the matrix elements of Eq. (6),

Θρρ
′

i,λλ′(p, k) ≡ ūρi (p, λ)Ouρ′i (k, λ′) , (8)

depend on the interaction kernel O(s) = 1 or O(v0) = γ0 chosen. In
this work, we use a mixed kernel where one parameter y dials continously
between scalar and vector interaction, while preserving the nonrelativistic
limit, which only differs in a sign for both interactions:

V(p, k) = V (p, k)
[
(1− y)11 ⊗ 12 − yγ01 ⊗ γ02

]
. (9)

These procedures enable us to transform the 1CSE into an eigenvalue prob-
lem for the bound-state masses µ and the corresponding wave functions,
which are expanded in a basis of cubic B-splines as in [3].

In Fig. 3, we study the convergence of the 7 lowest positive energies
ED ≡ µ−m1 of the 1CSE in the S-wave (` = 0) with increasing number of
quadrature points n. We consider a mass ratio of m1/m2 = 5 (heavy–light
meson), σ = 0.2 GeV2 and y = 0 (pure scalar interaction). The results are
computed with 64 B-splines. In Fig. 3 (right), the last column “NInt.” refers
to the results obtained with the adaptive integration routine “NIntegrate”
from the software Mathematica 9.0.

We observe a much faster convergence with the singularity-free version
of the 1CSE than with the previous unsubtracted version, which is also
reflected in a reduction of the computing time to 1/6 to obtain the same
accuracy.
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Fig. 3. Left: Singular 1CSE results. Right: Singularity-free 1CSE results.
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Fig. 4. Positive energies ED [GeV] for 1CSE in all partial waves up to ` = 4.
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In Fig. 4, the 5 lowest positive energies ED of the 1CSE for partial waves
up to ` = 4 are presented, for the same set of parameters used in Fig. 3. Even
though pseudoscalar particles do not have high orbital angular momentum,
these results serve as an important numerical test, before attempting the
study of other structures for the two quark vertex Γ , where the high `
equations become more complex. For ` > 2, we did not obtain converged
results with the unsubtracted version of 1CSE, not even after increasing the
number of splines. The subtraction technique fixes this problem because the
integrand becomes a smoother function.

In the results of Figs. 3 and 4, we neglect retardation and use the simplest
replacement (p − k)2 → −(p − k)2, but we have already performed test
calculations with retardation and obtained good convergence.

The main conclusion from this work shows that the numerical method
developed in [2] for the nonrelativistic equation is also applicable to the
relativistic 1CSE. Future work will generalize it to more complex equations
such as the 4CSE, necessary for realistic light meson systems.
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