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The possible existence of non-uniform phases in cold dense quark matter
in the light quark sector (u, d, s) is addressed within the Nambu–Jona-
Lasinio Model extended to include the flavour-mixing ’t Hooft determinant.
The effect of changes in the coupling strengths of the model is discussed.
It is seen that the inclusion of the strange sector catalyses the appearance
of the non-uniform phases, extending the domain for their existence.
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1. Introduction

It has been proposed long ago (for recent reviews, see [1]) that the non-
trivial dynamics due to the attractive interaction of pions with quarks (or
nucleons) allows for the existence of non-uniform phases in the low tempera-
ture and high chemical potential regime of the QCD phase diagram. As the
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sign problem affects lattice QCD at non-zero baryon density, the use of al-
ternative approaches such as low energy models of the Nambu–Jona-Lasinio
(NJL) [3] type, became a useful exploratory tool in the studies of strongly
interacting matter.

In this paper, we outline some results reported in detail in [4], pertaining
to the study of the NJL model with the ’t Hooft determinant [5] applied to
the case, where the light quark chiral condensates assume the shape of the
chiral wave. We work at zero temperature and in the chiral limit for the u
and d sector, while the s quark has a non-vanishing current mass.

2. The model

The chiral wave ansatz proposed in [6], with the corresponding quark
orbitals and energy levels, forms a self consistent solution of the Euler–
Lagrange equations of the model in the chiral limit. They have the form

〈
ψlψl

〉
=

hl
2
cos(q · r) ,

〈
ψliγ5τ3ψl

〉
=
hl
2
sin(q · r) ,

E± =

√
M2 + p2 +

q2

4
±
√

(p · q)2 +M2q2 , (1)

where τ3 is the Pauli matrix acting in the isospin space, M is the quark
dynamical mass, p denotes the momentum of the quark, and q is the wave
vector of the condensate modulation. We choose the z-axis to coincide with q
(note that the E− branch has a lower energy than E+). For the s quark,
a uniform condensate background is considered.

The application of techniques of Ref. [7] yields the thermodynamic po-
tential of the model in the mean field approximation as

Ω = Vst +
Nc

8π2
(J−1(Mu, µu, q) + J−1(Md, µd, q) + J−1(Ms, µs, 0)) ,

Vst =
1

16

(
4G
(
h2u + h2d + h2s

)
+ κhuhdhs

)∣∣Mi

0
, (2)

where hi (i = u, d, s) are twice the quark condensates. The integrals J−1
stem from the fermionic path integral over the quark bilinears which appear
after bosonization, while Vst corresponds to the stationary phase contribu-
tion to the integration over the auxiliary bosonic fields. The NJL coupling
strength is G, while κ is the OZI-violating ’t Hooft determinant coupling.
From the value evaluated at the dynamical masses M , a subtraction of its
value evaluated atM = 0 is made [8] (denoted by the |M0 symbol in Eq. (2)).
We use a regularized kernel corresponding to two Pauli–Villars subtractions
in the integrand [9], namely ρ

(
sΛ2

)
= 1− (1 + sΛ2)exp(−sΛ2). The Dirac
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and Fermi sea contributions, Jvac
−1 and Jmed

−1 , can be written explicitly as

J−1 = Jvac
−1 + Jmed

−1 ,

Jvac
−1 =

∫
d4pE
(2π)4

∞∫
0

ds

s
ρ
(
sΛ2

)
8π2e−s(p

2
0E+p

2
⊥)

×
(
e
−s

(
q
2
+
√
M2+p2z

)2

+ e
−s

(
q
2
−
√
M2+p2z

)2)∣∣∣∣M,q

0,0

,

Jmed
−1 = −

∫
d3p

(2π)3
8π2T

(
Z+
+ + Z+

− + Z−+ + Z−−
)∣∣M,q

0,0
+ C(T, µ) ,

Z±± = log

(
1 + e−

E±∓µ
T

)
− log

(
1 + e−

E±
Λ
∓µ
T

)
− Λ2

2TE±Λ

e−
E±
Λ
∓µ
T

1 + e−
E±
Λ
∓µ
T

,

C(T, µ) =

∫
d3p

(2π)3
16π2T log

((
1 + e−

|p|−µ
T

)(
1 + e−

|p|+µ
T

))
, (3)

where E±Λ =
√

(E±)2 + Λ2. The |M,q
0,0 notation refers to the subtraction of

the same quantity evaluated for M = 0 and q = 0, which is done to set the
zero of the potential at a uniform gas of massless quarks. The superscript ±
in the definition of Z refers to the energy branch, whereas the subscript refers
to the sign in front of the chemical potential in the exponent. The C(T, µ)
term is needed for thermodynamic consistency [8]. The minimization of
the Ω with respect to M and q has to be done self-consistently with the
resolution of the following stationary phase equations (where mi stands for
the current masses of the quarks): mu −Mu = Ghu +

κ
16hdhs

md −Md = Ghd +
κ
16huhs

ms −Ms = Ghs +
κ
16huhd

. (4)

3. Results

In our study, we chose the parameters to reproduce a reasonable value
for the vacuum dynamical mass of the light quarks (Ml = 300 MeV). The
current masses were set to mu = md = 0, ms = 186 MeV, the remaining
three parameters of the model (G, κ and Λ) can be then reduced to two:
the ’t Hooft coupling strength, κ, and the dimensionless curvature, τ =
NcGΛ

2/(2π2). In the chiral limit, τ = 1 is the critical value above which
dynamical chiral symmetry breaking occurs as a crossover for 1 < τ < 1.23
and as a first order transition for higher values.
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With no OZI-violating term, the light and strange sectors are decou-
pled: two independent first order transitions occur for the light and strange
sector, with the latter shifted to higher µ due to the current s-quark mass
(both occur at values of µ close to the vacuum dynamical mass Mvac

i ). At
high enough µ, the energetically favourable solution is always a modulated
one, with a non-vanishing q — the non-uniform phase develops. Asymptoti-
cally, this solution goes to limµ→∞ {h, q} = {0, 2µ} and becomes degenerate
with the trivial one. Above 1.23 < τ < 1.53, a window for energetically
favourable finite-q solutions appears in the vicinity of the first order tran-
sition encompassing it; the transition is not to a vanishing condensate, but
{hl, 0} → {h′l, q}. The window ends with the light condensate going contin-
uously to zero. For τ > 1.53, this windows extends and merges with the one
at higher chemical potentials.

Turning on flavour mixing couples the u–d and strange sectors. At fixed
curvature, we find several different scenarios depending on the value of κ,
as seen in Fig. 1 where we show the τ = 1.4 case. For −κ > 290 GeV−5, a
new solution branch appears, with a shark-fin shape for hl in the vicinity of
µ ∼ Mvac

s (see the first row of Fig. 1). There are, therefore, three intervals
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Fig. 1. The µ-dependence of hl, hs and q. Each row corresponds to a different value
of the ’t Hooft coupling strength ([κ] = GeV5). Thicker lines denote the finite-q
solutions. In the grey regions, the value of q is undetermined, since hl = 0.
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of µ where an energetically favourable finite-q solution exists. They are
delimited by two first-order transitions and three crossovers (the crossovers
correspond to the disappearance/emergence of a non-vanishing hl). The two
first-order transitions occur slightly below (for the one taking place near
Mvac
l ) and slightly above (near Mvac

s ), thus excluding the occurrence of the
q = 0 transitions. A zoom of the behaviour of the chiral condensates near
the transitions can be seen in Fig. 2. For −κ > 935 GeV−5, the first two
µ windows with finite-q solutions merge, resulting in the disappearance of
the corresponding crossover transitions, as can be seen in the second row of
Fig. 1. With −κ > 1660 GeV−5, the last transition to a vanishing q solution
does not occur and is substituted by a first-order transition between the two
phases with finite q (third row of Fig. 1 and Fig. 3). The dependence on κ
of these critical chemical potentials can be seen in Fig. 4.
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Fig. 2. Zoom for the chemical potential dependence of the chiral condensate solu-
tions (thicker lines refer to finite-q solutions) near the transitions (marked by the
vertical dotted lines), case of κ = −500 GeV−5.
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Fig. 3. Zoom of the solutions for q in the chemical potential window close to Mvac
s

for κ = −500,−1000, and −1800 GeV5 (from left to right).
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Fig. 4. Critical chemical potentials (in GeV) as functions of κ ([κ] = GeV5). The
upper dotted line corresponds to the cut-off Λ. The chemical potential of the first
order transitions are marked with the solid black lines. Dashed lines indicate the
borders of the region where the finite-q solutions exist. We distinguish between
three types of critical chemical potentials and an example for this distinction in
the κ = −500 GeV−5 case appears in Fig. 4(b) (type I with finite q and hl, type II
with finite hl and vanishing q, and type III with finite q but vanishing hl).

We conclude that the flavour mixing acts as a catalyst for the emer-
gence of globally stable inhomogeneous solutions in zero-temperature quark
matter.
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