
Vol. 8 (2015) Acta Physica Polonica B Proceedings Supplement No 1

MESON CLOUD EFFECTS IN NUCLEON
RESONANCES AT LOW AND INTERMEDIATE

ENERGIES∗

Bojan Golli

Faculty of Education, University of Ljubljana, 1000 Ljubljana, Slovenia
and

Jožef Stefan Institute, 1000 Ljubljana, Slovenia

(Received December 5, 2014)
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1. Introduction

The notion that the pion cloud plays an important role in the formation
of nucleon resonances was first anticipated by da Providência and Urbano
in 1978 [1]. In their work, the nucleon resonances arise as excitations of
the pion cloud around the bare nucleon. The classical pion field was inter-
preted as a coherent state of pions and the resonances with good angular
momentum and isospin were obtained by Peierls–Yoccoz projection. This
approach is similar to the so-called model of dynamical generation of reso-
nances. On the other hand, in the quark model, the resonances emerge as
excitations of the three-quark core. In early eighties, we started a long term
collaboration between the Coimbra group (J. da Providência, M. Fiolhais,
P. Alberto, and L. Amoreira) and the Ljubljana group (M. Rosina, S. Širca,
M. Čibej and B.G.). In our work, we have combined both approaches as-
suming a superposition of different excitations of the quark core surrounded
by meson clouds. In such a picture, some resonances can be described as
almost pure single-quark excitations of the core, while for other resonances
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the main mechanism is the excitation of the meson cloud. How can we de-
termine which mechanism dominates in a given resonance? If we investigate
just meson scattering in the resonance region, we may not reliably deter-
mine the nature of the resonance since, by a suitable modification of the
coupling constants and the interaction range, it is possible to reproduce rea-
sonably well the elastic and inelastic amplitudes almost in any model. We
claim that studying meson electro-production processes, in particular the
Q2-dependence of helicity amplitudes, is a much more severe test to analyse
the structure of various resonances.

In the next sections, we present some examples in which we have estab-
lished the important role of the meson cloud. We have considered different
chiral quark models, the linear σ-model with quarks, the chromodielectric
model in which a dynamical confinement is generated by an additional scalar
field, and the cloudy bag model, which turns out to be suitable for the de-
scription of higher resonances.

2. The ∆(1232) resonance

The ∆(1232) was the first resonance that we tackled. We assumed a
superposition of the bare ∆ core with three quarks in the 1s orbit with the
spins and isospins coupled to 3/2, and the pion cloud around the bare nu-
cleon and the bare ∆ core. Using Peierls–Yoccoz projection, we maintained
the correct spin and isospin of the composite state. We calculated the elec-
tromagnetic transition amplitudes as a function of the photon virtuality Q2.
We found that the processes in which the photon interacts with the pion
cloud importantly contribute to the helicity amplitude [2]. For the leading
magnetic dipole contribution (M1), we could have anticipated such a result
from our experience with the nucleon magnetic moments. On the other
hand, the quadrupole excitations, the transverse E2 and the Coulomb C2
are not allowed in the nucleon, but are present in the transition N to ∆ am-
plitude. We have found relatively large quadrupole amplitudes originating
from the p-wave pion flip of its third component of the angular momentum
(see Fig. 1). In a quark model without pions such a strong contribution
could only be possible if we assumed an unrealistically strong admixture of
the d-wave quark configuration. To the best of our knowledge, we were the
first to calculate the Q2 behavior of the E2 and C2 amplitude. We showed
that the different Q2 behavior of these amplitudes (equal for a point-like
source) originates from the long-range part of N and ∆ wave function which
is dominated by the pion tail. Since then, our result has been rediscovered
in different approaches and supported by new, more precise measurements.
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Fig. 1. The separate quark and pion contributions to the helicity amplitude A1/2

in units of 10−3 GeV−1/2 calculated in the linear σ-model (left panel), the ratio
E2/M1 (middle panel) and C2/M1 (right panel) calculated in the linear σ-model
and in the chromodielectric model.

3. The multi-channel approach

While for the ∆(1232) resonance the inelastic channels can be ignored,
they have to be included if we want to study higher resonance. We have
developed an approach for computing the multi-channel K matrix which
includes many-body quasi-bound quark states in the scattering formalism [3].
In this approach, the channel state corresponding to the scattering baryon
and meson is (up to the normalization factor) given by∣∣ΨMB

JI

〉
= a†(k)|ΨB〉+ cR |ΦR〉+

∑
M ′B′

∫
dk′ χM

′B′MB (k′, k)

ωk + EB′ −W
a†
(
k′
)
|ΨB′〉 .

(1)
The first term represents the free meson (M) and the baryon (B), and defines
the channel, the next term is a bare three-quark state, and the third term
describes meson clouds around different isobars. Here, W is the invariant
energy, J and I are the angular momentum and isospin of the meson–baryon
system. The integration is taken in the principal value sense. The multi-
channel K matrix can then be expressed as

KM ′B′MB

(
k, k′

)
= −π

√
ωEB
kW

〈
ΨMB

∣∣ ∣∣VM ′ (k′)∣∣ |ΨB′〉 , (2)

where VM ′(k′) stands for the quark–meson vertex to be computed in the un-
derlying quark model. Above theMB threshold, the meson amplitudes χ in
(1) are proportional to theK matrix and are computed using the Lippmann–
Schwinger equation. Finally, the scattering T matrix is obtained by solving
the Heitler equation T = K + iTK.

The meson electro-production amplitudes can be calculated in the same
framework by including the γN channel. Close to a resonance, the amplitude
can be cast in the form
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Mres
MBγN =

√
ωγE

γ
N

ωπEN

ξ

πVπNR

〈
Ψ̂R|Vγ |ΨN

〉
TMBπN ,

where the photon vertex Vγ acquires contributions from quarks and pions,
ξ is the spin–isospin factor depending on the multipole, and the spin and
isospin of the outgoing hadrons. Here 〈Ψ̂R|Vγ |ΨN 〉 is the helicity amplitude;
the resonance state Ψ̂R is extracted from the residua in the second and the
third term in (1) at the resonance pole.

4. The Roper resonance

As the underlying quark model we have taken the cloudy bag model,
primarily because of its simplicity. In the first step, we considered only two
inelastic channels, the π∆ channel, and — assuming that the two-pion decay
proceeds mainly through the σ-meson — the σN channel. We have further
assumed that the bare quark state in (1) is a mixture of the bare nucleon
state and the bare Roper state in which one quark is excited to the 2s orbit:
ΦR = sin θ(1s)3 + cos θ(1s)2(2s)1. Using only the three channels, we were
able to reproduce the experimental behavior of the scattering amplitudes up
to W ∼ 1600 MeV; to reproduce the amplitudes at somewhat higher W , we
included the second Roper resonance. In quark models, the πNR coupling
constant turns out to be too weak to reproduce the large resonance width,
mostly due to the orthogonality of the 1s and 2s orbits. In our approach,
this coupling is strongly enhanced through the pion loops as well as through
the mixing of the two bare configurations as shown in Fig. 2.
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Fig. 2. The real and the imaginary part of the T-matrix in the P11 partial wave
(left panel), the ratio of the dressed and the bare πNR coupling constants and
the mixing angle θ as a function of W (middle panels), the quark and the pion
contribution to the helicity amplitude Ap

1/2 in units of 10−3 GeV−1/2 calculated in
the cloudy bag model using the bag radius of 0.83 fm (right panel).
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The role of the pion cloud is most strongly pronounced in the calcula-
tion of the helicity amplitude [4]. Here, the pion cloud plays an important
role through the γNR vertex renormalization as well as through the direct
coupling of the photon to the pion. In the region of low Q2, the quark con-
tribution is small and positive, while the pion contribution and the vertex
corrections due to meson loops are large and negative. At intermediate Q2,
these two effects are responsible for the zero crossing of the amplitude. Us-
ing the bag radius of 1 fm instead of our standard choice of 0.83 fm, we are
able to reproduce the popular value of 0.5 (GeV/c)2 for the crossing point.
At higher Q2, the quark core takes over, rendering the amplitude positive.

Let us mention that the sign of the helicity amplitude calculated in a
model is ambiguous since the resonance production is a non-observable pro-
cess. By convention, the sign is determined by the sign of the resonance de-
cay within the same model. It is, therefore, not possible to compare different
calculations of the helicity amplitudes if the sign of the decay amplitude is
not provided.

5. The negative parity resonances

Here, the pion cloud consists predominantly of the s- and d-wave pions
which are less strongly coupled to quarks than the p-wave pions in the case
of positive parity resonances. Nonetheless, we have found some interesting
phenomena that reveal the importance of the meson cloud also in this case.

In the S11 partial wave, there are two relatively close-lying resonances,
the N(1535) and N(1650). In the quark model, these resonances appear
as mixtures of two 70-plet states with spin 1/2 and 3/2, i.e.: |Ψ(1535)〉 =
cos θ|281/2〉−sin θ|481/2〉 and |Ψ(1650)〉 = sin θ|281/2〉+cos θ|481/2〉. It turns
out that the mixing is such that only the lower state couples strongly to the
ηN channel, while the coupling to this channel is almost absent for the
higher state. In our calculation [5], we took a fixed angle of θ ≈ 30◦. A
more elaborate calculation, including pion, η-meson and kaon loops shows
that the mixing angle is generated entirely by the meson cloud effects and
has a strong W dependence. As a consequence, it improves the behavior of
the scattering amplitudes at smaller values of W (solid lines in Fig. 3) over
the calculation with the fixed value of θ (dotted lines).

The pion cloud contribution to the helicity amplitudes is generally weak,
of the order of 10%, except the case of the ∆(1700) 3/2− resonance. Here
we have found an almost equal contributions of the quark core and the pion
cloud (see Fig. 4), quite a similar situation as in the case of its positive parity
counterpart, the ∆(1232) [6].
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Fig. 3. The scattering T-matrix in the S11 partial wave (left panel), the renormal-
ized πNN∗ coupling constants for the two resonance and the mixing angle between
the corresponding bare states as a function of W (middle panels).
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Fig. 4. The separate quark and pion contributions to the helicity amplitudes A1/2

and A3/2 for the ∆(1700) resonance.
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