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HAMILTONIAN APPROACH TO QCD IN COULOMB
GAUGE: DECONFINEMENT FROM CONFINEMENT∗
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The deconfinement phase transition is studied within the Hamiltonian
approach to QCD in Coulomb gauge. Assuming a quasiparticle picture for
the grand canonical gluon ensemble, the thermal equilibrium state is found
by minimizing the free energy with respect to the quasi-gluon energy. The
deconfinement phase transition is accompanied by a drastic change of the
infrared exponents of the ghost and gluon propagators. Above the phase
transition, the ghost form factor remains infrared divergent but its infrared
exponent is approximately halved. The gluon energy being infrared diver-
gent in the confined phase becomes infrared finite in the deconfined phase.
Furthermore, the effective potential of the order parameter for confinement
is calculated for SU(N) Yang–Mills theory in the Hamiltonian approach by
compactifying one spatial dimension and using a background gauge fixing.
In the simplest truncation, neglecting the ghost and using the ultraviolet
form of the gluon energy, we recover the Weiss potential. From the full
non-perturbative potential (with the ghost included), we extract a criti-
cal temperature of the deconfinement phase transition of 269 MeV for the
gauge group SU(2) and 283 MeV for SU(3).
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1. Introduction

The understanding of the phase diagram of strongly interacting matter
is one of the most challenging problems in particle physics. The finite-
temperature behavior of QCD can be studied by means of lattice Monte
Carlo calculations. This method fails, however, to describe baryonic matter
at high density or, more technically, QCD at large baryon chemical po-
tential. Hence, alternative, non-perturbative approaches to QCD which do
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not rely on the lattice formulation and hence do not suffer from the no-
torious sign problem are required. In recent years, much effort has been
devoted to develop continuum non-perturbative approaches. Among these
is a variational approach to the Hamilton formulation of QCD. In this paper,
we will summarize the basic results obtained within this approach on the
finite-temperature behavior of Yang–Mills theory and, in particular, on the
deconfinement phase transition. We will begin by summarizing the basic
ingredients of the Hamiltonian approach to Yang–Mills theory and review
the essential results obtained at zero temperature. Then, we will consider
the grand canonical ensemble of Yang–Mills theory and study the decon-
finement phase transition. Finally, we will review results obtained for the
Polyakov loop, which is the order parameter of confinement. In particular,
we will present the effective potential of this order parameter from which we
extract the critical temperature of the deconfinement phase transition.

2. Hamiltonian approach to Yang–Mills theory

The Hamiltonian approach to Yang–Mills theory starts from the Weyl
gauge A0(x) = 0 and considers the spatial components of the gauge field
Aai (x) as coordinates. The momenta are introduced in the standard fashion
πai (x) = δSYM[A]/δȦai (x) = Eai (x) and turn out to be the color electric field
Ea(x). The theory is quantized by replacing the classical momentum πai by
the operator Πa

i (x) = −iδ/δAai (x). The central issue is then to solve the
Schrödinger equation Hψ[A] = Eψ[A] for the vacuum wave functional ψ[A].
Due to the use of Weyl gauge Gauss’ law, DΠψ[A] = 0 (with D = ∂ + gA
being the covariant derivative in the adjoint representation) has to be put
as a constraint on the wave functional, which ensures the gauge invariance
of the latter. Instead of working with explicitly gauge invariant states, it
is more convenient to fix the gauge and explicitly resolve Gauss’ law in the
gauge chosen. For this purpose, Coulomb gauge ∂A = 0 turns out to be
particularly convenient. In Coulomb gauge, the gauge fixed Hamiltonian
reads

H = 1
2

∫
d3x

(
J−1A Π⊥JAΠ

⊥ +B2
[
A⊥
])

+HC , (1)

where Ba(x) is the non-Abelian color magnetic field and JA = Det(−D∂)
is the Faddeev–Popov determinant. Furthermore,

HC =
g2

2

∫
d3xJ−1A ρ (−D∂)−1

(
−∂2

)
(−D∂)−1 JA ρ (2)

is the so-called Coulomb term with ρa = −Â⊥ abi Πb
i being the color charge

density of the gauge field. Here, Âabi = facbAci is the gauge field in the ad-
joint representation. When fermions are included, the color charge density
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contains in addition a contribution of the quark field. The Faddeev–Popov
determinant occurs also in the measure of the scalar product of wave func-
tionals

〈Φ| . . . |Ψ〉 =
∫
DA⊥JAΦ∗

[
A⊥
]
. . . Ψ

[
A⊥
]
. (3)

Solving the Schrödinger equation within the familiar Rayleigh–Schrödinger
perturbation theory yields in leading order the well known β-function of
Yang–Mills theory [1]. Here, we are interested in a non-perturbative solution
of the Schrödinger equation, for which we use the variational principle with
the following trial ansatz for the wave functional [2]

ψ[A] =
1√
JA

exp

[
−1

2

∫
dx dy A⊥(x)ω(x, y)A⊥(y)

]
. (4)

Here, ω(x, y) is a variational kernel, which is determined from the minimiza-
tion of the energy 〈ψ|H|ψ〉 → min. For this wave functional, the static gluon
propagator D acquires the form

D(x, y) =
〈
A⊥(x)A⊥(y)

〉
= ω−1(x, y)/2 , (5)

which defines the Fourier transform of ω(x, y) as the gluon energy. Minimiza-
tion of 〈H〉 with respect to ω(x, y) yields the result shown in figure 1 (a). At
large momenta, the gluon energy ω(p) raises linearly like the photon energy,
however, in the infrared it diverges like ωIR(p) ∼ 1/p, which is a manifesta-
tion of confinement, i.e. the absence of gluons in the infrared. Figure 1 (b)
compares the result of the variational calculation with the lattice results
for the gluon propagator [23]. The lattice results can be nicely fitted by
Gribov’s formula

ω(p) =
√
p2 +M4/p2 (6)

with a mass scale ofM ' 880 MeV. The gluon energy (dashed line) obtained
with the Gaussian trial wave functional agrees quite well with the lattice
data in the infrared and in the UV-regime but misses some strength in the
mid-momentum regime. This missing strength is largely recovered when a
non-Gaussian wave functional is used [3].

Figure 2 (a) shows the static quark–antiquark potential obtained from
the vacuum expectation value of the Coulomb Hamiltonian (2) [4]. It rises
linearly at large distances, with a coefficient given by the so-called Coulomb
string tension σc, which on the lattice is measured to be a factor of 2 . . . 3
larger than the Wilsonian string tension. At small distances, it behaves like
the Coulomb potential as expected from asymptotic freedom. The Coulomb
term (2) turns out to be irrelevant for the Yang–Mills sector. If one further
ignores the so-called tadpole [Fig. 2 (b)] (which contributes an IR-finite mass
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Fig. 1. (a) The gluon energy ω(p) obtained from the minimization of the energy
with the trial wave functional (4) [4]. (b) Comparison of the static gluon propagator
obtained in the variational approach with the lattice data [23].
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Fig. 2. (a) Static quark–antiquark potential [4], (b) tadpole diagram, (c) ghost
loop χ, and (d) Dyson–Schwinger equation for ghost propagator.

term) the gap equation, which follows from the minimization of the energy
with respect to ω, has the simple form

ω2(p) = p2 + χ2(p) , (7)

which is reminiscent of a dispersion relation of a relativistic particle with an
effective mass given by the ghost loop χ = −1

2

〈
δ2 ln J [A]
δAδA

〉
shown in Fig. 2 (c).

Calculating the ghost propagator〈(
−D̂∂

)−1〉
= d(−∆)/(−∆) , (8)
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with the vacuum wave functional (4) in the rainbow-ladder approximation re-
sults in a Dyson–Schwinger equation (DSE) for the ghost form factor d(−∆)
[Fig. 2 (d)], which has to be solved together with the gap equation (7). The
ghost form factor d(−∆) measures to which extent QCD differs from QED
and thus comprises the non-perturbative IR behaviour of QCD. (In QED,
the ghost propagator is given by (−∆)−1 so that d(p) = 1.) The inverse of
the ghost form factor can be shown to represent the dielectric function of the
Yang–Mills vacuum [6] and the so-called horizon condition d−1(p = 0) = 0,
which is a necessary condition for confinement, guarantees that this func-
tion vanishes in the infrared ε(p = 0), which means that the Yang–Mills
vacuum is a perfect color dielectricum, i.e. a dual superconductor. We ob-
tain here precisely the picture which is behind the MIT bag model: At small
distances inside the bag, the dielectric constant is the one corresponding to
trivial vacuum, while outside the bag the dielectric constant vanishes, which
guarantees by the classical Gauss’ law ∂(εE) = ρfree, the absence of free color
charges, which is nothing but confinement. Figure 3 (a) shows the solution
of the Dyson–Schwinger equation for the ghost form factor. It diverges for
p → 0 and approaches asymptotically one, in agreement with asymptotic
freedom. Note also that in the whole momentum regime, the dielectric func-
tion ε(p) = d−1(p) is smaller than 1, which implies anti-screening.
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Fig. 3. Ghost form factor d at zero temperature (a) and the infrared exponent β of
the ghost form factor as a function of temperature (b) [5].

3. Hamiltonian approach to Yang–Mills theory
at finite temperature

The Hamiltonian approach can be straightforwardly extended to finite-
temperature Yang–Mills theory by studying the grand canonical ensemble
with vanishing gluon chemical potential and minimizing the free energy in-
stead of the vacuum energy. For this purpose, one constructs a complete



238 H. Reinhardt, D. Campagnari, J. Heffner

basis of the gluonic Fock space by identifying the trial state (4) as the vac-
uum state of the gluonic Fock space [5]. Furthermore, one assumes a single-
particle density operator. Variation of the free energy with respect to the
kernel ω(p) yields the same gap equation (7) as in the zero temperature case,
except that the ghost loop χ(p) is now calculated with the finite-temperature
ghost propagator, which is obtained from the same Dyson–Schwinger equa-
tion as before, see Fig. 3 (b), except that also the gluon propagator has to
be replaced by its finite-temperature counterpart, which is given by

D(p) =
1

2ω(p)
(1 + 2n(p)) , n(p) = (exp(βω(p))− 1)−1 . (9)

Here, n(p) are the finite-temperature gluon occupation numbers. The two
coupled equations (ghost DSE and gap equation) can be solved analytically
in the ultraviolet as well as in the infrared at zero and infinite temperature.
For this purpose, one makes the power law ansätze ω(p) = A/pα, d(p) =
B/pβ for the gluon energy ω(p) and the ghost form factor d(p). Assuming
a bare ghost-gluon vertex, one finds the following sum rule for the infrared
exponents

α = 2β + 2− d , (10)

where d is the number of spatial dimensions. From the equations of motion,
one finds the following solutions for the infrared exponent of the ghost form
factor

d = 3 : β = 1 , β ≈ 0.795 ,

d = 2 : β = 0.4s (11)

for d = 3 and d = 2 spatial dimensions, respectively.
At arbitrary finite temperature, an infrared analysis is impossible due to

the fact that the gluon energy ω(p) enters the finite-temperatures occupation
numbers n(p) (9) exponentially. However, at infinitely high temperature,
these occupation numbers n(p) simplify to n(p) ' 1/βω(p). For the infrared
exponent, one finds then still the same sum rule (10), however, the equations
of motions yield now in d = 3 spatial dimensions only a single solution with
β = 1/2. By the sum rule (10), this implies an infrared finite gluon energy,
which corresponds to a massive gluon propagator. Figure 3 (b) shows the
infrared exponent of the ghost form factor as function of the temperature
as obtained from the numerical solution of the coupled gap equation (7)
and ghost Dyson–Schwinger equation Fig. 2 (d). As one observes, the two
solutions existing at low temperatures merge at a critical temperature Tc
and eventually approach the high temperature value β = 1/2. Figure 4
shows the numerical solution for the ghost form factor and the gluon energy
for temperatures below and above Tc. The obtained results are in agreement
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with the analytically performed infrared analysis. Using the Gribov mass in
the gluon energy (6) to fix the scale, one finds a critical temperature in the
range of Tc = 275 . . . 290 MeV, see Ref. [5] for more details.
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Fig. 4. Zero- and finite-temperature solutions for the ghost form factor d(p) (left
panel) and the gluon kernel ω(p) (right panel).

4. The Polyakov loop potential

An alternative way to determine the critical temperature is by means of
the Polyakov loop, which we will consider now.

In the standard path integral formulation of a quantum field theory,
temperature is introduced by continuing the time to purely imaginary values
and compactifying the Euclidean time axis to a circle. The circumference
L of the circle defines the inverse temperature. The Polyakov loop is the
Wilson line along the compactified Euclidean time direction

P [A0](x) =
1

N
trP exp

 L∫
0

dx0A0(x0,x)

 , (12)

where P is the path-ordering symbol. The expectation value of this quantity
can be shown be related to the free energy F∞(x) of an isolated static
quark by 〈P [A0](x)〉 ∼ exp (−LF∞(x)). In the confined phase, 〈P [A0](x)〉
vanishes due to center symmetry, while in the deconfined phase, where center
symmetry is broken, F∞(x) is finite and thus 〈P [A0](x)〉 is non-zero. In
Polyakov gauge, ∂0A0 = 0 and with A0 residing in the Cartan algebra, in the
fundamental modular region P [A0] is a convex function ofA0 and by Jensen’s
inequality, 〈P [A0]〉 ≤ P [〈A0〉], instead of 〈P [A0]〉 one can alternatively use
P [〈A0〉] or 〈A0〉 as order parameter of confinement [7, 8]. The easiest way to
obtain the order parameter of confinement is, therefore, to do a background
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field calculation where the background field a0 is chosen to agree with the
expectation value of the gauge field 〈A0〉 and, furthermore, to satisfy the
Polyakov gauge. From the minimum amin

0 of the corresponding effective
potential, one obtains the order parameter as 〈P [A0]〉 ' P [amin

0 ]. Such
a background field calculation has been done long time ago in one-loop
perturbation theory [9, 10], which yields the potential shown in figure 5,
which is referred nowadays as Weiss potential. From the minimum amin

0 = 0
of this potential, one finds P [amin

0 = 0] = 1 corresponding to the deconfined
phase. Here, we use the Hamiltonian approach to evaluate the effective
potential e[a0] non-perturbatively [11, 12].
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Fig. 5. The Weiss potential.

Since the Hamiltonian approach assumes Weyl gauge A0(x) = 0, one
obviously faces a problem. However, one can exploit O(4) invariance of
Euclidean Yang–Mills theory and compactify instead of the time one spatial
axis to a circle and interprete the circumference of the circle as the inverse
temperature. We will compactify the 3-axis and choose the background field
in the form of a = ae3. The calculation of the effective potential e(a, L)
in the Hamiltonian approach was for the first time done in Ref. [11] for the
gauge group SU(2) and in Ref. [12] for SU(3), where also the details of the
derivation can be found. One finds the following result

e(a, L) =
∑
σ

1

L

∞∑
n=−∞

∫
d2p⊥
(2π)2

(ω (pσ)− χ (pσ)) , (13)

where ω(p) and χ(p) are the gluon energy and the ghost loop in Coulomb
gauge at zero temperature (see Eq. (7)), which, however, have to be taken
here at the momentum argument shifted by the background field

pσ = p⊥ + (pn − σ · a) e3 , pn =
2πn

L
. (14)
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Here, pn is the Matsubara frequency of the compactified dimension and p⊥ is
the momentum perpendicular to the compactified direction. Furthermore,
σ are the root vectors of the algebra of the gauge group. This potential
has the required periodicity property e(a, L) = e(a + µk/L,L), where µk
denotes the co-weights of the gauge algebra. Its exponentials define the
center elements of the gauge group exp(iµk) = zk ∈ Z(N). The expression
(13) for the effective potential is surprisingly simple and requires only the
knowledge of the gluon energy ω(p) and the ghost loop χ(p) in Coulomb
gauge at zero temperature.

Before we present the full potential, let us first ignore the ghost loop
χ(p) = 0. The potential (13) becomes then the energy density of a non-
interacting Bose gas with single-particle energy ω(p), living, however, on
the spatial manifold R2×S1. With χ(p) = 0 and replacing the gluon energy
ω(p) (6) by its ultraviolet part ωUV(p) = |p|, one obtains precisely the Weiss
potential [11, 12] corresponding to the deconfined phase. If on the other
hand, one chooses the infrared form of the gluon energy (6) ωIR(p) = M2

|p|
and still neglects the curvature, χ(p) = 0, one obtains the potential shown
in figure 6, whose minimum occurs at the center symmetric configuration,
which yields a vanishing Polyakov loop corresponding to the confined phase.
Obviously, the deconfinement phase transition results from the interplay be-
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Fig. 6. The infrared potential for different temperatures L−1.

tween the confining IR potential and the deconfining UV potentials. Choos-
ing ω(p) = ωIR(p)+ωUV(p), which can be considered as an approximation to
the Gribov formula (6), one has to add the UV and IR potentials, and finds
a phase transition at a critical temperature Tc =

√
3M/π. With the Gribov

mass M ' 880 MeV, this gives a critical temperature of Tc ≈ 485 MeV,
which is much too high. One can show analytically, see Refs. [11, 12], that
the neglect of the ghost loop χ(p) = 0 shifts the critical temperature to
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higher values. If one uses Eq. (6) for ω(p) and includes the ghost loop,
one finds the effective potential shown in Fig. 7, which gives a transition
temperature Tc ≈ 269 MeV for SU(2), which is in the right ballpark. The
Polyakov loop P [amin] calculated from the minimum amin of the effective
potential e(a, L) is plotted in Fig. 8 as a function of the temperature.
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Fig. 7. The full effective potential for SU(2) for different temperatures L−1.
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The effective potential for the gauge group SU(3) can be reduced to that
of the SU(2) group by noticing that the SU(3) algebra consist of three SU(2)
subalgebras characterized by the three positive roots σ = (1, 0), (12 ,

1
2
√
3
),

(12 ,−
1

2
√
3
) resulting in

eSU(3)(a) =
∑
σ>0

eSU(2)[σ](a) . (15)
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The effective potential for SU(3) is shown in Fig. 9 as a function of a3, a8.
As one notices, above and below Tc, the minima of the potential occur in
both cases for a8 = 0. Cutting the 2-dimensional surfaces at a8 = 0, one
finds the effective potential shown in Fig. 10. This shows a first-order phase
transition, which occurs at a critical temperature of Tc = 283 MeV. The
first-order nature of the SU(3) phase transition is also seen in Fig. 11 where
the Polyakov loop P [amin] is shown. Finally, let us also mention recent work
on the Polyakov loop in alternative continuum approaches [13–16] or on the
lattice [17–20].
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5. Conclusions

In our paper, we have shown that the Hamiltonian approach in Coulomb
gauge gives a decent description of the infrared properties of Yang–Mills
theory and, at the same time, can be extended to finite temperatures where
it yields critical temperatures for the deconfinement phase transition in the
right ballpark. Furthermore, we have shown that the effective potential
of the Polyakov loop can be obtained form the zero-temperature energy
density by compactifying one spatial dimension. This potential yields also
the correct order of the deconfinement phase transition for SU(2) and SU(3).
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