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In this paper, we revise the main features of pseudospin and spin
symmetries of the Dirac equation with scalar and vector potentials and
mention several of its applications to strong interacting physical systems.
We present some recent results in which these symmetries are applied to
Coulomb potentials in the Dirac equation in 1+1 dimensions, including also
pseudoscalar potentials. These potentials are linear in |x| and may be ap-
plied in confining quark models. We explore all possible bound solutions,
both for fermions and antifermions, and show the relation between spin
and pseudospin symmetries by means of charge-conjugation and γ5 chiral
transformations.
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1. Introduction
Pseudospin symmetry has been a topic in nuclear physics since the late

60s, when it was introduced to explain the near degeneracy of some single-
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particle levels near the Fermi surface. The subject was revived in 1997 when
Ginocchio was able to relate it with a symmetry of the Dirac equation with
scalar S and vector V mean-field potentials such that V = −S+C, where C
is a constant. However, this symmetry cannot be realized exactly in nuclei
since the potential V + S provides the binding of nucleons in nuclei, but it
can be realized for confining potentials as harmonic oscillator or linear po-
tentials [1–3]. A related symmetry, the spin symmetry, was used to explain
the suppression of spin–orbit splittings in states of mesons with a heavy and
a light quark. For a review of these symmetries and their applications, see
Ref. [4]. In this paper, we will review briefly the origin of spin and pseudospin
symmetries in the Dirac equation, its generators, both for general potentials
and radial potentials, and their quantum numbers. Finally, we report about
the main conclusions of a recent work, in which these symmetries are ap-
plied to Coulomb potentials in the 1+1 Dirac equation, including scalar and
vector potentials as well as pseudoscalar potentials. These are linear con-
fining potentials so the results obtained may be applied in quark models
in 3+1 dimensions which use these kind of potentials. We also explore the
relationship between those symmetries by means of charge-conjugation and
γ5 chiral transformations already established in [2].

2. Spin and pseudospin symmetries in the Dirac equation

The time-independent Dirac equation for a spin 1/2 particle with massm,
energy E, under the action of scalar, S, and vector, V , potentials reads

Hψ =
[
α · p̂ c+ β

(
mc2 + S

)
+ V

]
ψ = Eψ ,

α =

(
0 σ

σ 0

)
, β =

(
I 0

0 −I

)
, (1)

and σ = (σ1, σ2, σ3) are the Pauli matrices. Following closely Bell and
Rueg’s paper [5], we project the spinor ψ into its components ψ± = P±ψ,
with P± = [(I ± β)/2]ψ, yielding ψ>+ = (φ 0) and ψ>− = (0 χ), φ and χ
being two-component spinors. Using P± on the Dirac equation (1), we get

cα · p̂ψ−+
(
Σ +mc2

)
ψ+ = Eψ+ , cα · p̂ψ++

(
∆−mc2

)
ψ− = Eψ− ,

(2)
where Σ = V + S and ∆ = V − S.

If ∆ = 0 (V = S) and after multiplying it by cα · p̂, the second equation
in (2) becomes p̂2/(E/c2 +m)ψ+ = (E −mc2 − Σ)ψ+, which is invariant
under the transformation δψ+ = ε·σ̃

2i ψ+ [5], where σ̃ is the 4×4 spin matrix.
Since ψ− = (cα · p̂)/(E +mc2)ψ+, and defining δψ = ε · S/(2i)ψ, we can
write the generators of this symmetry, called spin symmetry, as
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S = σ̃P+ + σsP− =

(
σ 0

0 σs

)
, (3)

where σs = α·p̂ σ̃ α·p̂/p̂2. These generators commute with the Hamiltonian
in (1) when V = S and form an SU(2) algebra, i.e., [Si,Sj ] = 2iεijkSk. The
physical significance of this symmetry can be understood by looking at the
second-order differential equation for ψ+ when scalar and vector potentials
are radial

p̂2 ψ+ +
2
r ∆
′L · S ψ+ − ~2∆′ ∂ψ+

∂r

E −∆+mc2
=

1

c2
(
E −∆+mc2

) (
E −Σ −mc2

)
ψ+ ,

(4)
where ∆′ = d∆/dr and S = (~/2) σ̃, L = r × p̂. From (4) is clear
that spin symmetry means the disappearance of the spin–orbit coupling in
a relativistic theory. For radial potentials, there is another SU(2) sym-
metry connected to the orbital angular momentum, whose generators are
L = LP+ + α · p̂ Lα · p̂/p̂2 P−. One has L2ψ = ~2 `(` + 1)ψ, where ` is
the orbital angular momentum quantum number of ψ+, even though ψ+ and
ψ− have different orbital angular momentum quantum numbers. The orbital
angular momentum of the lower component, ˜̀, is given by ˜̀ = ` − κ/|κ|,
where κ = −(` + 1) if j = ` + 1

2 , κ = ` if j = ` − 1
2 , meaning that levels

with the quantum numbers (n, l, j = l − 1/2) and (n, l, j = l + 1/2) are
degenerate. The results above would still be true if ∆ were just a constant.

If Σ = 0 (V = S) or a constant, one can repeat the arguments of the
previous section for the spinor ψ−, whose second-order equation would be
a Schroedinger-like equation. The corresponding symmetry, the pseudospin
symmetry, has the SU(2) generators S̃ = σ̃P− + σs P+ = γ5S. Now, it is
the spin–orbit coupling for ψ− which disappears, as can be seen from

p̂2 ψ−+
2
r Σ
′L · S ψ− − ~2Σ′ ∂ψ−

∂r

E −Σ −mc2
=

1

c2
(
E −∆+mc2

) (
E −Σ −mc2

)
ψ− .

(5)
Again, in this case, there is another SU(2) symmetry, whose generators are
L̃ = LP− + α · p̂ Lα · p̂/p̂2 P+ = γ5L. In this case, the orbital angular
momentum ˜̀ is a good quantum number, i.e., L̃2

ψ = ~2 ˜̀(˜̀+1)ψ, such that
the doublets (n′, l+2, j = l−1/2) (n, l, j = l+1/2) are degenerate. In nuclei,
n′ = n − 1, and it was precisely the observation of the near-degeneracy of
such levels in nuclei that led to the pseudospin concept.

The 1+1 dimensional time-independent Dirac equation for a fermion of
massm, energy E, under the action of vector V , scalar, S, and pseudoscalar,
Vp, potentials can be written as
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Hψ = Eψ , H = cσ1p+ σ3mc
2 +

I + σ3
2

Σ +
I − σ3

2
∆+ σ2Vp , (6)

using the potentials Σ and ∆ defined before and where I denotes the 2× 2
unit matrix. This equation is covariant under x→ −x if Vp changes sign and
V and S are unchanged. The charge-conjugation operation is given by the
transformation ψc = σ1ψ

∗ and the Dirac equation becomes Hcψc = −Eψc,
with Hc = cσ1p+ σ3mc

2− I+σ3
2 ∆− I−σ3

2 Σ + σ2Vp, i.e., it changes the sign
of E, V and Vp, and therefore turns Σ into −∆ and ∆ into −Σ.

The chiral operator for a Dirac spinor is γ5 = σ1. Under the discrete
chiral transformation [2], the spinor is transformed as ψχ = γ5ψ and the
transformed Hamiltonian Hχ = γ5Hγ5 is Hχ = cσ1p − σ3mc2 + I+σ3

2 ∆ +
I−σ3
2 Σ+σ2Vp. Thus the chiral transformation changes the sign of the mass,

the scalar and pseudoscalar potentials, thus turning Σ into ∆ and vice versa.
If we now write the two-component spinor ψ in terms of its upper (ψ+)

and lower (ψ−) components, i.e., ψ> = (ψ+ ψ−), the Dirac equation gives
rise to two coupled first-order differential equations for these components

−i~cψ′− +mc2ψ+ +Σψ+ − iVpψ− = Eψ+ , (7)
−i~cψ′+ −mc2ψ− +∆ψ− + iVpψ+ = Eψ− , (8)

where the prime denotes differentiation with respect to x. From (7) and (8),
one can see that the components have opposite parities and also get

− ~2

2m
ψ′′+ +

(
E +mc2

)
Σ + V 2

p + ~cV ′p
2mc2

ψ+ =
E2 −m2c4

2mc2
ψ+ , (9)

for E 6= −mc2 and ∆ = 0, whereas for Σ = 0 and with E 6= mc2, one gets

− ~2

2m
ψ′′− +

(
E −mc2

)
∆+ V 2

p − ~cV ′p
2mc2

ψ− =
E2 −m2c4

2mc2
ψ− . (10)

The solutions of (7) and (8) with E = ∓mc2 respectively are called isolated
solutions [1]. In 1+1 dimensions, the potential generated by a point charge
at the origin, the Coulomb potential, is linear in |x| [6]. We will consider
either Σ or ∆ to be equal to k1|x| and Vp = k2x. Equation (9) is written as

− ~2

2m
ψ′′+ +

(
1

2
Ax2 +B|x|

)
ψ+ =

E2 −m2c4 − ~c k2
2mc2

ψ+ , (11)

where A = k22/(mc
2), B = k1(E +mc2)/(2mc2), whereas Eq. (10) becomes

− ~2

2m
ψ′′− +

(
1

2
A′ x2 +B′|x|

)
ψ− =

E2 −m2c4 + ~c k2
2mc2

ψ− , (12)

where A′ = k22/mc
2, B′ = k1(E −mc2)/2mc2.
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The cases with k2 = 0 or k1 = 0 have already been studied (see [7]
and [1]). For k2 = 0, one gets as solutions Airy functions for x > 0 [8],
ψ+(z) ∝ Ai(z), with z = ax + b, a = [(E + mc2)k1/~2c2]1/3, b = −(E −
mc2)a/k1. Solutions for the entire real axis are obtained by requiring that
they have a definite parity, which implies ψ+(0) = 0 for odd solutions and
ψ′+(0) = 0 for even solutions, giving rise to the conditions Ai(b) = 0 and
Ai′(b) = 0, respectively. From these, one is able to obtain the energy eigen-
values for the even and odd solutions. When Σ = 0, solutions for ψ− are
again Airy functions Ai(z′) with z′ = a′x+ b′, a′ = [(E−mc2)k1/(~2c2)]1/3,
b′ = −(E +mc2)a′/k1. The spectra for both ∆ = 0 and Σ = 0 cases have
only positive energy states for k1 > 0 and negative energy states for k1 < 0.

When k1 = 0, one gets the so-called Dirac oscillator in 1+1 dimen-
sions studied in [2]. The spectrum has both positive and negative en-
ergies for a particular value of k2, such that, defining the dimensionless
strength κ2 = k2/(~m2c3), the energy eigenvalues are given by En

2 =
m2c4[1 + κ2 + |κ2|(2n+ 1)], with n integer (see [2] for details).

For the general case of k1 6= 0 and k2 6= 0 (∆ = 0), the bound solutions of
equation (11) are given by parabolic cylinder functions, denoted by Dν(y),
where y = αx + βΣ , α =

√
2|k2|/(~c), βΣ = αk1(E + mc2)/(2k22), ν =

(E2 −m2c4)/(2~ c|k2|)− 1/2 (k2/|k2|+1)+k21/|k2|3 (E +mc2)2/(8~c). The
eigenergies are obtained, as before, by the requirements Dν(βΣ) = 0 and
D′ν(βΣ) = 0 corresponding to odd and even solutions respectively.

For Σ = 0 solutions, Eq. (12), we have similar solutions Dµ(y
′) with

y′ = αx + β∆, β∆ = αk1(E − mc2)/(2k22) µ = (E2 −m2c4)/(2~ c|k2|) +
1/2 (k2/|k2| − 1) + k21/|k2|3 (E −mc2)2/8~c.
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Fig. 1. First four energy levels as functions of κ1 when κ2 = 5 and ∆ = 0 (left
panel) and κ2 = −5 and Σ = 0 (right panel).
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In Fig. 1 the solutions for ∆ = 0 and Σ = 0 for two symmetric values
of κ2 are plotted. For k1 = 0, we get the Dirac oscillator solutions, and the
solutions presented correspond to the values n = 0, 1, 2, 3 of its quantum
number, which also defines the parity of the solutions: for even or odd n,
one has even or odd solutions, respectively.

3. Discussion and conclusions

We note that in Fig. 1 the two plots are identical if we reverse both
the vertical and horizontal axes, i.e., for κ2 = −5, Σ = 0, we get the
same solutions as for κ2 = 5 and ∆ = 0 if we reverse the signs of the
energy and of κ1. This is because βΣ turns into β∆ when k1 → −k1 and
E → −E and, on the other hand, ν turns into µ when k2 → −k2 and
E → −E, while it is left unchanged by the change of the k1 sign. These are
exactly the transformations induced by charge-conjugation, i.e., performing
the changes E → −E, ∆ → −Σ Vp → −Vp. The chiral transformation γ5
changes the combination E ± mc2 into E ∓ mc2, changes the sign of k2,
and also turns ∆ into Σ and vice versa. This is equivalent to the charge
conjugation transformation described above.

It is also interesting to remark that the introduction of a pseudoscalar
potential in addition to the vector and scalar potentials has the affect of
allowing positive and negative energy solutions for the same set of values
of (k1, k2). This happens also for scalar and vector Coulomb potentials [9]
but not for pure scalar and vector confining potentials as is the present case.
These conclusions can be applied to the one-dimensional linear potential
problem in a 3+1 Dirac equation and in the spherically symmetric problem
also in 3+1 dimensions, provided one has s states. As such, these results
might be of relevance to quarkonium phenomenology in 3+1 dimensions.
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