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General results are obtained for meson mass splittings and mixings in
unquenched (coupled-channel) quark models. Theorems derived previously
in perturbation theory are generalised to the full coupled-channel system.
A new formula is obtained for the mass splittings of physical states in terms
of the splittings of the valence states. The S-wave hyperfine splitting de-
creases due to unquenching, but its relation to the vector e+e− width is
unchanged; this yields a prediction for the missing ηb(3S). In the ordinary
(quenched) quark model, the P -wave hyperfine splitting vanishes: this re-
sult also survives in the unquenched quark model, despite large mass shifts
across the P -wave multiplet. A ratio of mass splittings used to discriminate
quarkonium potential models is scarcely affected by unquenching.
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1. Angular momentum coefficients

Unquenched quark models for meson spectroscopy incorporate qq pair
creation via the transition QQ→ (Qq)(qQ). Most models have an operator
with the same basic structure, and so share the same general solution [1, 2]:
this applies to 3P0 models, flux tube models (3P0 and 3S1), pseudoscalar–
meson emission models, the Cornell model with Lorentz vector confinement
and, in the heavy-quark limit, more general microscopic models with Lorentz
scalar confinement and one-gluon exchange.

These “non-flip, triplet” models are characterised by the assumptions
that the initial Q and Q spins are conserved, and that the created qq pair
is coupled to spin triplet. The operator is a scalar product χ ·O of a spin
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triplet wavefunction χ (common to all models) and a spatial operator O
(which differs from model to model). The predictions of such models are
consistent with lattice QCD [3, 4].

In Refs. [1, 2], a general expression is obtained for the transition matrix
element valid for all non-flip, triplet models. The initial QQ state is charac-
terised by a radial quantum number n, and spin, orbital and total angular
momenta S, L and J . Similarly, the Qq and qQ mesons have quantum num-
bers n1S1L1J1 and n2S2L2J2, are coupled to angular momentum j, and are
in a partial wave l. The matrix element factorises

Mjl

[
n S L J
n1S1L1J1
n2S2L2J2

]
= ξjl

[
S L J
S1L1J1
S2L2J2

]
·Al

[
n L
n1L1
n2L2

]
, (1)

where ξ and A are the matrix elements of χ and O respectively, along with
some angular momentum factors. The dependence of the matrix element on
the relative momenta of the meson pair is contained in A.

The angular momentum coefficients ξ are model independent and are
discussed in detail in Refs. [1, 2]. For present purposes, we need only exploit
their orthogonality, which leads to the closure relation

∑
S1J1
S2J2
j

Mjl

[
n̂ Ŝ L̂ J
n1S1L1J1
n2S2L2J2

]∗
Mjl

[
n S L J
n1S1L1J1
n2S2L2J2

]
= δ

ŜS
δ
L̂L
A∗l

[
n̂ L̂
n1L1
n2L2

]
·Al

[
n L
n1L1
n2L2

]
. (2)

2. The coupled-channel problem

The eigenstates i of the coupled-channel problem are admixtures of va-
lence states QQ and meson–meson continua (Qq)(qQ). In solving for the
eigenvalues Ei, the key quantity is the following matrix element

〈
n̂ŜL̂J‖Ω(Ei)‖nSLJ

〉
=

∑
n1S1L1J1
n2S2L2J2

jl

∫
dpp2

Mjl

[
n̂ Ŝ L̂ J
n1S1L1J1
n2S2L2J2

]∗
Mjl

[
n S L J
n1S1L1J1
n2S2L2J2

]
E12(p)− Ei

,

(3)
where p and E12 are the momenta and energy of the continuum mesons.

If there are no spin splittings among the continua, the closure relation (2)
can be exploited. (This is otherwise not possible since E12 depends on S1,
J1, S2 and J2 through the continuum meson masses.) This gives
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〈
n̂ŜL̂J‖Ω(Ei)‖nSLJ

〉
= δ

ŜS
δ
L̂L
〈n̂L‖Ω(Ei)‖nL〉, with (4)

〈n̂L‖Ω(Ei)‖nL〉 =
∑
n1L1
n2L2l

∫
dpp2

A∗l

[
n̂ L
n1L1
n2L2

]
·Al

[
n L
n1L1
n2L2

]
E12(p)− Ei

. (5)

In this approximation,s there is no mixing due to unquenching among states
with different S or L. This is a generalisation of a theorem obtained in
perturbation theory [5] to the full coupled-channel problem.

If we further assume (and this assumption will be relaxed shortly) that
there are no spin splittings among the valence masses, then since the mixing
matrix is independent of S and J , the physical masses are also independent
of S and J (another generalisation of Ref. [5]), as is the configuration mixing
of different radial states (a new result).

We return now to the more general case with splittings among the valence
and (consequently) physical masses, but not among the continua. (Small
continuum splittings can be dealt with, and do not modify the results below.)
Ignoring mixing among different radial states, the physical mass EnSLJ of a
state below threshold is related to its valence mass MnSLJ ,

EnSLJ =MnSLJ − 〈Ω(EnSLJ)〉nSLJ (6)

and the squared amplitude that the state is in the valence configuration is

ZnSLJ =
1

1 + 〈ω(EnSLJ)〉nSLJ
, with ω(EnSLJ) =

∂Ω(EnSLJ)

∂EnSLJ
. (7)

With the following parametrisation of masses

MnSLJ =MnL + δMnSLJ , EnSLJ = EnL + δEnSLJ , (8)

the Taylor expansion of the mass shift about EnL can be written as

〈Ω(EnSLJ)〉nSLJ ≈ 〈Ω(EnL)〉nL + δEnSLJ〈ω(EnL)〉nL (9)

which leads to a relation between the physical and valence spin splittings

δEnSLJ = ZnLδMnSLJ , with ZnL =
1

1 + 〈ω(EnL)〉nL
. (10)

This is the main result of this work. Unquenching reduces spin splittings,
such that the physical splittings are suppressed with respect to the valence
splittings by the (spin-averaged) valence component ZnL.
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The validity of the formula can be checked by comparing its predic-
tions to existing model calculations in the literature. Table I gives a typical
example for the hyperfine splitting of S-wave charmonia and bottomonia.
A forthcoming paper will discuss the result in more detail, testing its pre-
dictions more widely against the literature (including for orbitally excited
states). The rest of this paper is instead devoted to some applications.

TABLE I

Some model calculations (from Refs. [6, 7]) for the spin-averaged mass shifts 〈Ω〉nS ,
the bare and physical hyperfine splittings δM and δE, and the splittings δEpred.

predicted by equation (10). All quantities are in MeV. The entry (∗) uses the
author’s own calculation for ZnS , which disagrees with Ref. [7].

〈Ω〉nS δM δE δEpred.

cc [6]

1S 174 129 117 116.4
2S 212 64 48 48.4

bb [7]

1S 57.41 71.39 68.50 ∗68.44
2S 67.58 23.12 21.30 21.36
3S 67.74 15.73 14.00 14.06

3. Some applications

3.1. S-wave hyperfine splitting and e+e− widths

In the quenched quark model, meson hyperfine splittings and e+e− widths
are both proportional to the square of the QQ wavefunction at the origin,
which leads to the model-independent relation

δM2S/δM1S = Γe+e−→23S1
/Γe+e−→13S1

. (11)

The relation is satisfied by the data for charmonia and bottomonia, so it
is important to establish that it survives the effects of unquenching [8].
Unquenching suppresses the physical mass splittings by a factor ZnS , but
at the same time, suppresses the e+e− widths by Zn3S1

(assuming that
they are dominated by the QQ component). To a very good approximation
Zn3S1

≈ ZnS , so the relation survives with physical masses. The corre-
sponding relation between the 1S and 3S levels yields a mass prediction
10334.6± 2.2 MeV for the ηb(3S).
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3.2. P-wave hyperfine splitting

The quenched quark model result for the P -wave hyperfine splitting
1
9

(
M3P0

+ 3M3P1
+ 5M3P2

)
−M1P1

= 0 (12)

is satisfied by charmonia and bottomonia. Since each of the states in the
multiplet is subject to large, and different, mass shifts, a priori the result
could be spoiled by the effects of unquenching. Remarkably, across most
models these shifts conspire to make very little contribution to the hyperfine
splittings; for example, the shifts (MeV) of 1P bottomonia from Ref. [7] give

1
9 (80.777 + 3× 84.823 + 5× 87.388)− 85.785 = 0.013 . (13)

The vanishing hyperfine splitting is protected by a mechanism observed and
explained in Ref. [9, 10], but can also be seen as a simple consequence of
equation (10): if the bare states have zero hyperfine splitting, so too do the
physical states. Corrections to (10) due to different continuum masses turn
out to affect only the spin–orbit splittings at leading order. The vanishing
D-wave splitting (also protected by this mechanism) leads to a prediction
for the missing 1D2 bottomonium [11].

3.3. The QQ potential

The ratio of mass splittings R = (M3P2
−M3P1

)/(M3P1
−M3P0

) has
been used by many authors to discriminate among models for the QQ po-
tential, which raises the question of whether such conclusions should be
modified due to unquenching. According to equation (10), the ratio R is
invariant under unquenching, and so conclusions based on quenched quark
models survive. In practice, there are corrections to equation (10) which
lead to a decrease of R due to unquenching, but the effect is not substantial.

3.4. Leptonic width inequalities

Expanding ω(EnSLJ) in a similar way to Ω(EnSLJ) leads to inequalities
among the Z-factors, for example Z1S0

> Z3S1
and Z3P0

> Z3P1
> Z3P2

.
These modify relations among leptonic widths which arise due to eliminating
common factors of the wavefunction at the origin, such as

Γ1S0→γγ
Γ3S1→e+e−

>
4

3

(
1 + 1.96

αs

π

)
,

Γ3P2→γγ
Γ3P0→γγ

<
4

15

(
1− 5.51

αs

π

)
. (14)

It will be difficult to identify such effects in practice, as leptonic width
relations are subject to large theoretical and experimental uncertainties;
nevertheless, it is instructive to know the direction in which unquenching
modifies such relations.
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3.5. Splittings in lattice QCD

In unquenched lattice QCD, spin splittings vary with dynamical quark
masses. On the basis of equation (10), one might expect that decreasing
the quark mass leads necessarily to a decrease in spin splittings. (Due to a
decrease in binding energy and an enhancement in the coupling matrix ele-
ment, the valence component would decrease.) The situation is not so sim-
ple, though, since the quark mass influences αs, and moreover there is con-
siderable evidence that unquenched lattice QCD without explicit (Qq)(qQ)
operators is not sensitive to the coupling QQ→ (Qq)(qQ) [12].

Nevertheless future lattice calculations with (complete multiplets of)
(Qq)(qQ) operators could, in principle, offer a direct test of equation (10), if
spin splittings and Z-factors are measured at various quark masses. There is
already some work in this direction; Bali et al. [13] have measured splittings
and Z-factors for several charmonia, but at one quark mass and with one
(Qq)(qQ) operator per channel.

4. Conclusion

General results have been obtained for unquenched quark models based
on the non-flip, triplet operator. Previous results from perturbation the-
ory, valid in the absence of spin splittings, have been generalised to the full
coupled-channel problem, and extended. The more realistic scenario, incor-
porating spin splittings among the valence and physical masses, involves a
simple mass formula, some of whose implications have been discussed here.
The formula ensures that several empirically successful results of quenched
quark models survive the effects of unquenching. The formula should be
testable in future lattice QCD calculations. Although it was not discussed
here, the formula is also useful for practical calculations of mass splittings
in unquenched quark models.
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