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AN UNITARIZED MODEL FOR TETRAQUARKS
WITH A COLOR FLIP-FLOP POTENTIAL∗
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In this work, a color structure dependent flip-flop potential is developed
for the two quarks and two antiquarks system. Then, this potential is
applied to a microscopic quark model which, by integrating the internal
degrees of freedom, is transformed into a model of mesons with non-local
interactions. With this, the T-matrix for the system is constructed and
meson–meson scattering is studied. Tetraquarks states, interpreted as poles
of the T-matrix, both bound states and resonances, are found. Special
emphasis is given to the truly exotic qqQ̄Q̄ system, but some results for the
crypto-exotic qQq̄Q̄ are also presented.
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1. Introduction

The existence of composite particles constituted by two quarks and two
antiquarks, tetraquarks is still debated. Although several experimental can-
didates [1, 2] have been advanced, no one has been firmly established. From
the theoretical point of view, these systems were studied mainly as a bound
state of two quarks and two antiquarks [3, 4].

In this work, we start with a microscopic model of two quarks and two
antiquarks interacting through a four-body potential. By integrating the
confined degrees of freedom, we obtain a multi-channel model of mesons.
This model is then used to find bound states and to construct the scattering
T-matrix, from were resonances are found.
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2. Method

2.1. Microscopic potential

The static potential has been found on the lattice [5, 6]. It is given by a
triple flip-flop potential, where its values correspond to the confining string
disposition that minimizes the potential for a given configuration (see Fig. 1)

VFF = min(VI, VII, VT) . (1)

VI and VII are the two-meson potentials

VI = VM(r13) + VM(r24) , (2)
VII = VM(r14) + VM(r23) , (3)

where VM is the quark–antiquark potential in a meson, which is well de-
scribed by the Cornell potential VM = K − γ

r + σ r.
VT is the tetraquark potential, given by

VT = 2K − γ
∑
i<j

Cij
rij

+ σ Lmin(x1,x2,x3,x4) ,

where Cij = 1/2 between two quarks or two antiquarks and Cij = 1/4
between a quark and an antiquark. Lmin is the minimal length of the string
linking the four particles.

Fig. 1. The three possible string configurations for the ground state of a system of
two static quarks and two static antiquarks.

Two linearly independent color singlets can be formed from two quarks
and two antiquarks, say the two meson–meson states |CI〉 = 1

3 |QiQjQiQj〉
and |CII〉 = 1

3 |QiQjQjQi〉, or the color anti-symmetric and symmetric states

|A〉 =
√

3
2 (|CI〉 − |CII〉) and |S〉 =

√
3
8(|CI〉 + |CII〉). We need a 2 × 2 matrix
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potential to be possible a transition between the two states. So, we have to
know the first excited potential of the system, as well as the color structure
of both states.

The color vector of the ground state could either be |CI〉 when VFF = VI,
|CII〉 when VFF = VII or |A〉 when VFF = VT. As for the excited state,
we know it has to be orthogonal to the ground one since the potential is
Hermitian. So we have |C̄I〉 when VFF = VI, |C̄II〉 when VFF = VII and |S〉
when VFF = VT, with 〈CA|C̄A〉 = 0. We assume that the value of the excited
state is the second lowest of the three potentials. This way, we obtain the
potential of the system.

2.2. From quarks to mesons

Since we study meson–meson interaction, the natural choice for the color
structure basis is the |CI〉 and |CII〉. Note that in this basis gAB ≡ 〈CA|CB〉 6=
δAB

g =

(
1 1

3
1
3 1

)
.

Expanding the color states Ψ = ΨACA, we arrive at the Schrödinger equation

gABT̂qΨ
B + V̂ABΨ

B = EgABΨ
B . (4)

Since we want a theory of mesons, we must have the kinetic energy of both
meson sectors, and not the kinetic energy of quarks TI = Tq + VI 6= TII =
Tq + VII 6= Tq. For this, we define the kinetic energy of meson in a way that
is both Hermitian and gives the correct asymptotic states

T̂S =

(
T̂I

T̂I+T̂II
6

T̂I+T̂II
6 T̂II

)
and

V̂S =

(
V11 − VI V12 − VI+VII

6

V12 − VI+VII
6 V22 − VII

)
.

This gives a new Schrödinger equation with the same form. The compo-
nents ΨA are then expanded in two meson states and so we obtain the
equation

T̂αβψ
β + V̂αβψ

β = Egαβψ
β , (5)

where the Greek letter index includes the color index A and the remaining
quantum numbers index i. The potential V has the form

V̂AiAjψ
Aj = Vij(r)ψAj(r) ,

V̂AiBjψ
Bj =

∫
d3r′B vij

(
rA, r

′
B

)
ψBj

(
r′B
)

when A 6= B .

Tαβ and gαβ have similar structures.
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2.3. Asymptotic behavior

Writing each component as ψα(r) = uα(r)
r Ylαmα , the asymptotic behavior

of uα(r) is

uα(r)→ Aiα

√
µα
kα

sin

(
kαr −

lαπ

2
+ ϕiα

)
+ fiαe

i(kαr− lαπ2 ) . (6)

This leads to the definition of the scattering T-matrix for this system

Tij =
∑
α

√
kα
µα
A∗iαe

−iϕiαfjα . (7)

To calculate it, we first generate Nopen eigenfunctions of the T̂S operator
T̂SΨ0 = EgΨ0, where Nopen is the number of open channels. Then the base
is orthogonalized with the Gram–Schmidt procedure, using as inner product

〈Ψ0i|Ψ0j〉 =
∑
α

A∗iαAjα cos(ϕiα − ϕjα) .

This product is a direct consequence of the asymptotic behavior Eq. (6). Aiα
are computed by fitting the long range behavior of the generated functions.

We calculate the Ψi by solving Eq. (5) with Ψi = Ψ0i + χi(
T̂ + V̂

)
χi = Egχi − V Ψ0i .

From the long distance behavior of χi, we find fiα and calculate the T-matrix
with Eq. (7).

By continuing the definition of the T-matrix into the complex energy
plane, we find its poles which are tetraquark resonances.

2.4. Bound states

We need a very large box to be able to accurately find bound states, if we
use Dirichlet boundary conditions and the bound states have a very small
binding energy, having therefore a large spatial extension. To solve Eq. (5)
using finite differences, we employ boundary conditions that depend on the
energy

[H +B(E)]u = Egu

and try to find a zero on the determinant of the matrix H + B(E) − Eg.
Employing the Newton’s method, it is found with the iteration

E(n+1) = E(n) − 1

Tr
[
(H +B(E)− Eg)−1 (B′(E)− g)

] .
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3. Results

In this work, we neglect all spin and dynamical quark effects. The meson
kinematics is non-relativistic.

3.1. Exotic channels

For the exotic qqQ̄Q̄ system, we consider the wave-function to be of the
type

Ψ = Φ(ρ13,ρ24)ψ(r13,24)CI + ξΦ(ρ14,ρ23)ψ(r14,23)CII ,

where ξ = ±1. This wavefunction includes space and color degrees of free-
dom, but not spin. The functions Φ must have a definite symmetry for the
exchange of its arguments Φ(y,x) = sΦ(x,y) with s = ±1. This way, when
we apply the exchange operators of color and space PRCij , we obtain

PRC12 Ψ = ξ(−1)Lrs Ψ ,

PRC34 Ψ = ξ Ψ .

Including spin and since wave function must be anti-symmetric for quark
and antiquark exchanges, we have P12Ψ = (−1)1+S12ξ(−1)LrsΨ = −Ψ and
P34Ψ = (−1)1+S34ξΨ = −Ψ . In this work, we choose ξ = 1, s(−1)Lr = 1
and L = 0. This gives, S12 = S34 = 0 and so S = 0. Consequently, we have
J = 0. We also choose states of positive parity, only.

With mQ̄ = mb = 4.7 GeV, and varying the mass of the quark from
mx = 0.40 GeV to mx = 1.3 GeV, we find bound states for all the quark
masses. Results for the binding energy are given in Table I and the wave
functions of the ground state component are shown in Fig. 2. For this system,
we find resonances between the opening of the second and third thresholds.
Their complex energies are shown in Table II.

Setting mQ̄ = 1.3 GeV and similar quark masses, no bound states or
resonances are found.

TABLE I

Binding energies of the qqb̄b̄ bound states for different quark masses.

mx [GeV] B [MeV]

1.30 ' 0
1.00 −0.95
0.70 −7.91
0.40 −48.54
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Fig. 2. Bound state wave function for different masses of the lightest quark in the
xxb̄b̄ system.

TABLE II

Resonances for the xxb̄b̄ system (top) and for the xbx̄b̄ (bottom).

mx [GeV] E [GeV] Nopen

1.30 12.998–0.0179 i 2
1.00 12.505–0.0192 i 2
0.70 12.050–0.0215 i 2
0.40 11.666–0.0171 i 2

0.70 11.545–0.237 i 1
12.019–0.033 i 2

0.40 11.431–0.024 i 1
11.687–0.114 i 2

3.2. Crypto-exotic channels

We also study the crypto-exotic qQq̄Q̄ system, for mQ = mb = 4.7 GeV
and mq = mx varying from 0.4 to 1.3 GeV. We do not find any bound states
and only find resonances for mx = 0.40 GeV and mx = 0.70 GeV. Their
energies are displayed in Table II.

4. Conclusion

An unitarized method to compute the meson–meson scattering was de-
veloped. With it, we were able to find bound states and resonances for the
0+ xxb̄b̄ system. For the xbx̄b̄ system, only resonances were found and for
sufficiently small mx. Refinements should be easy to include in this model.
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Our results however, seem to disagree with lattice results, because the
bound state for exotic system has S12 = 0 and so is a scalar isotriplet, but,
according to [7], such a system should be repulsive. More work is needed to
understand the source of this discrepancy and whether it is a problem with
the potential model or with the approach itself.

Marco Cardoso is supported by the FCT under the contract SFRH/BPD/
73140/2010.
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