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We show how Regge trajectories of resonances appearing in elastic two-
meson scattering can be obtained just from their pole position and coupling,
using a dispersive formalism. In this way, the finite widths of resonances
can be taken into account in Regge trajectories. For the ρ(770), f2(1270)
and f ′2(1525), this method leads to ordinary linear Regge trajectories with
the universal slope, as expected for ordinary q̄q resonances. In contrast, for
the f0(500) meson, the resulting Regge trajectory is non-linear and with
much smaller slope, which is another strong indication of its non-ordinary
nature.
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1. Introduction

This workshop was a celebration of Eef van Beveren’s long and fruitful
career at the occasion of his 70th birthday. I gladly joined this celebration
with a work which, starting from a rather unrelated framework, is finally
related to some of his best known works [1, 2]. At a time when the σ meson
(nowadays the f0(500)) had even been removed from the Review of Particle
Properties, the lightest scalar nonet was identified, including a σ around
500 MeV with a large width and a large meson–meson admixture [1]. A pure
quark model description was shown not to be enough to obtain the correct
mass and width, but an interaction with the meson–meson state was needed.
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The σ physical mass was a consequence of such interactions, since if they
were tuned weaker, the mass would move towards 1 GeV, i.e. light scalars
“behave in a completely different fashion to regular qq̄ nonets” [2].

Actually, in a recent work [3] and in some ongoing research project [4],
we have used the analytic properties of amplitudes in the complex angular
momentum plane to study Regge trajectories of resonances decaying pre-
dominantly to one channel (almost elastic resonances). One of the main
features of our calculation is that we take the widths into account, i.e., our
Regge trajectories are complex functions, as they should be in principle.
Note that widths have been traditionally ignored in Regge descriptions, but
that does not seem appropriate for resonances as wide as the f0(500). The
interest of our results stems from the form of these trajectories, which can
be used to discriminate between different underlying QCD structures. As it
is well known, linear (J,M2) trajectories relating the angular momentum J
and the mass squared can be interpreted in terms of quark–antiquark states
(they can be obtained from the rotation of a flux tube connecting a quark
and an antiquark). Significant deviations from this linear behavior would
support a different nature of a resonance and the scale of the trajectory slope
would indicate the scale of the mechanism responsible for its existence.

In particular, we have studied in [3] the trajectories of the lightest res-
onances in elastic ππ scattering: the ρ(770), which is a well established
ordinary q̄q state, and the f0(500) or σ meson, whose nature is still under
debate and whose resulting trajectory, as we will see, does not follow the
ordinary linear (J,M2) trajectories. Frequently, the sigma is not included in
those linear fits [5] (which, as we will see, is the correct thing to do), or its
huge width is used as the uncertainty in the mass, so that it could be accom-
modated easily. But as we will see, the width is part of the Regge trajectory,
and considering it as just a mass uncertainty is not really justified.

2. Regge trajectories from a resonance pole and residue
Near a Regge pole, the partial wave for the scattering of two particles

with equal mass m reads

tl(s) = β(s)/(l − α(s)) + f(l, s) , (1)

where f(l, s) is a regular function of the generalized angular momentum l
and the Regge trajectory α(s) and residue β(s) are analytic functions, the
former having a cut along the real axis for s > 4m2.

The analytic properties of α(s) and β(s) and the elastic unitarity condi-
tion imply the following system of coupled dispersion relations [6]

Reα(s) = α0 + α′s+
s

π
PV

∞∫
4m2

ds′
Imα (s′)

s′ (s′ − s)
, (2)
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where PV denotes “principal value” and α0, α
′ and b0 are free parameters to

be determined by forcing the resulting amplitude to have a specified pole
and residue. In particular, for a given set of α0, α

′ and b0 parameters, we
solve the system of Eqs. (2) and (3) iteratively. The value of the parameters
is fixed by fitting only three inputs, namely, the real and imaginary parts
of the resonance pole position sM ' (MR − iΓR/2)2, where MR and ΓR are
the pole mass and width of the resonance, together with the absolute value
of the pole residue |gM |. Namely, we fit the resonance pole on the second
Riemann sheet to: βM (s)/(l − αM (s)) → |g2M |/(s − sM ), with l = 0, 1 for
M = σ, ρ. The pole parameters of the f0(500) and the ρ(770) are taken
from a precise dispersive representation of ππ scattering data [7, 8]. Note
that we are just fitting the scattering pole parameters and never the Regge
trajectory, which is therefore a prediction of our approach.

Thus, in the left panel of Fig. 1, we show the resulting Regge trajectories
found in [3]. The resulting trajectory parameters are given in Table I. The
imaginary part of αρ(s) is much smaller than the real part, and the latter

Fig. 1. (Left) αρ(s) and ασ(s) Regge trajectories, from our constrained Regge-
pole amplitudes. (Right) ασ(s) and αρ(s) in the complex plane. At low and
intermediate energies (thick continuous lines), the trajectory of the σ is similar
to those of Yukawa potentials V (r) = −Ga exp(−r/a)/r [12] (thin dashed lines).
Beyond 2 GeV2, we plot our results as thick discontinuous lines because they should
be considered just as extrapolations.
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grows linearly with s. In view of our approximations, and taking into account
the fact that our error bands only reflect the uncertainty in the input pole
parameters, the agreement with previous Regge trajectory determinations
is remarkable when comparing with αρ(0) = 0.52±0.02 [9], αρ(0) = 0.450±
0.005 [10], α′ρ ' 0.83 GeV−2 [5], α′ρ = 0.9 GeV−2 [9], or α′ρ ' 0.87 ±
0.06 GeV−2 [11].

TABLE I

Parameters of the ρ(770) and f0(500) Regge trajectories calculated from their poles
in scattering. For the f0(500), b0 is not dimensionless because we have factorized
explicitly in β(s) the Adler zero required by chiral symmetry.

α0 α′ [GeV−2] b0

ρ(770) 0.520± 0.002 0.902± 0.004 0.52

f0(500) −0.090 +0.004
− 0.012 0.002+0.050

−0.001 0.12 GeV−2

In contrast, the f0(500) trajectory is definitely not linear and the slope
of the resulting curve at the physical mass is about two orders of magni-
tude smaller than that of ordinary mesons, like that of the ρ(770) calculated
above, or those of the f2(1270) or f ′2(1525) that we will show below. This
provides strong support for a non-ordinary nature of the f0(500) resonance.
Furthermore, the resulting slope, smaller than 1 GeV−2 by two orders of mag-
nitude or more is more typical of meson physics than of quark–antiquark in-
teractions. Moreover, the tiny slope excludes that any of the known isoscalar
resonances may lie on the f0(500) trajectory. To test how robust this ob-
servation is, we have checked that our results are very stable within the
uncertainties of the pole parameters. In addition, we have tried to force a
typical size linear trajectory on the σ, but that deteriorates the fit to the
σ pole and, particularly, to the coupling [3], and thus the resulting amplitude
is qualitatively very different from the observations in the physical region.

Note that with our formalism we are dealing correctly with the huge
f0(500) width, which by no means should be considered as an uncertainty
in the mass.

Furthermore, in Fig. 1 we show the striking similarities between the
f0(500) trajectory and those of Yukawa potentials in non-relativistic scat-
tering [12]. From the Yukawa G = 2 curve in that plot, which lies closest to
our result for the f0(500), we can estimate a ' 0.5 GeV−1, following [12].
This could be compared, for instance, to the S-wave ππ scattering length
' 1.6 GeV−1. Thus, it seems that the range of a Yukawa potential that
would mimic our low energy results is comparable but smaller than the ππ
scattering length in the scalar isoscalar channel. Of course, our results are
most reliable at low energies (thick continuous line) and the extrapolation
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should be interpreted cautiously. Nevertheless, our results suggest that the
f0(500) looks more like a low-energy resonance of a short range potential,
e.g. between pions, than a bound state of a confining force between a quark
and an antiquark.

Let us also report on our preliminary results for the f2(1270) and f ′2(1525)
resonances, which appear in D-wave ππ and KK̄ scattering, respectively.
Both of them are almost elastic: the f2(1270) has a branching ratio to ππ of
approximately 85%, whereas the f ′2(1525) has a branching ratio to KK̄ of
88% and thus we have treated them both within a purely elastic formalism.
Still, we have considered a relative systematic uncertainty of the size of one
minus their respective branching ratio. To determine the pole and residue
of the f2(1270), we have used the phenomenological parametrizations in [8].
For the f ′2(1525), we have just assumed a Breit–Wigner resonance shape
whose pole and residue have a straightforward relation to the observed mass
and the decay width to two kaons. Thus, in Fig. 2 we show the preliminary
resulting Regge trajectories [4], which come out to be almost real, linear and
with slopes quite consistent with the universal one, as it happened for the
ρ(770). The preliminary f2(1270) slope is 0.7 GeV−2 and the intercept is
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Fig. 2. f2(1270) (red) and f ′2(1525) (blue) Regge trajectories calculated from their
poles in ππ andKK̄ scattering respectively. The continuous lines correspond to the
real part of the trajectory (to be identified with spin at integer values), whereas the
dashed lines stand for the imaginary parts. The gray bands cover the uncertain-
ties in our calculation, mostly due to using the elastic approximation. The black
straight lines are the Regge trajectories obtained by fitting the mass and spin of
two resonances per trajectory. The light gray/yellow area is the mass region where
our elastic approach should be considered cautiously as a mere extrapolation.
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α0 = 0.9, whereas for the f ′2(1525) we obtain 0.63 GeV−2 and α0 = 0.53,
fairly consistent with expectations given the uncertainties of our approach.
Detailed error estimates will be evaluated in [4].

In summary, our formalism is able to predict the Regge trajectory of a
meson from its associated pole in elastic meson–meson scattering. We have
been able to calculate the Regge trajectories of the ρ(770), f2(1270) and
f ′2(1525), which come out almost real and linear, with the typical slope of
ordinary qq̄ resonances. However, this is not the case for the f0(500), which
explains why the lightest scalar meson has to be excluded from the linear
Regge fits of ordinary mesons.
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