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We report on recent study [M. Deak, K. Kutak, J. High Energy Phys.
1505, 068 (2015)] of the role of the kinematical constraint in the CCFM
equation and its non-linear extension. We compare numerical results ob-
tained by solving the CCFM equation and argue that kinematical constraint
represents an important correction.
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1. Introduction

In the regime of high energy scattering, where the center-of-mass energy
is larger than any other available scale, perturbative approach to processes
with high momentum transfer allows factorization of the cross section into a
hard matrix element with initial off-shell gluons and an unintegrated gluon
density [1,2]. The unintegrated gluon density is a function of the longitudinal
momentum fraction x and transverse momentum kT of a gluon. After taking
into account formally subleading corrections coming from coherence of gluon
emissions, one is lead to the CCFM equation which introduces gluon density
dependent on hard scale related to probe. In principle, it is an equation that
should be the ideal framework for application to final states at high energies
and covering DGLAP and BFKL domain in gluon channel. It has been
implemented in the Monte Carlo event generator [3]. However, so far, good
agreement with high precision data has been successfully achieved only in
rather inclusive processes like F2 and Drell–Yan [4]. It is known that on
the theory side, the CCFM physics is still to be completed. For instance:
the impact of the kinematical effects introducing energy conservation in
the CCFM evolution has been not investigated in all detail. As it turns
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out from our study, it is necessary to revisit the inclusion of the so-called
kinematical constraint [5] into CCFM equation. Only recently, the CCFM
has been promoted to non-linear equation [6–8] allowing, therefore, for the
possibility to investigate interplay of coherence effects and saturation [1]. In
particular, the important question is what is the role of the angular ordering
and kinematical effect in the evolution at the non-linear level. The optimal
form of initial conditions is also not known.

We present here a continuation of the work [9] done in [10,11].

1.1. The CCFM equation and the kinematical constraint

The CCFM equation for gluon density reads

A (x, kT, p) = A0(x, kT, p) + ᾱS

∫
d2q̄

πq̄2

1−Q0
q̄∫

x

dz θ(p− zq̄) P(z, kT, q̄)

×∆S(p, zq̄) A
(
x/z, kT

′, q̄
)
, (1)

where k′ = |k + (1 − z)q̄| and the modulus of two dimensional vectors
transversal to the collision plane are denoted |k| ≡ kT, |q| ≡ qT and x
is gluon’s longitudinal momentum fraction and ᾱS = NcαS/π. Also the
rescaled momentum is introduced as q̄ = |q̄| = qT/(1− z) where P (z, kT, q̄)
is the gluon splitting function. The function ∆S(p, zq̄) is the Sudakov form-
factor. The non-Sudakov form-factor ∆NS(z, kT, q̄) regularizes 1/z singular-
ity.

1.2. The kinematical constraint

The integration over q̄ in equation (1), although being constrained from
below by the soft cut-off Q0, is not constrained by an upper limit thus violat-
ing the energy-momentum conservation. Moreover, in the low-x formalism,
one requires that in the denominator of the off-shell gluon propagator one
keeps terms that obey |k2| = k2

T. In order to be consistent, the non-Sudakov
form-factor should be accompanied by a kinematical constraint limiting the
above integration over q̄. In an approximated form, it reads k2

T > z q̄2 and
at z � 1 guaranties that |k2| ' k2

T. In [5], it has been extended to a region
including also the case when z ∼ 1. Careful derivation leads to the following
form of the kinematical constraint k2

T > z qT
2

1−z = z (1 − z) q̄2. The lower
bound on z > x results in the upper bound on q2

T < k2
T/x ' ŝ providing

local condition for energy-momentum conservation. We include the kine-
matical constraint in the CCFM equation. The non-Sudakov form-factor
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after inclusion of the full form of the kinematical constraint assumes the
form

∆NS(z, kT, q̄) = exp

−αS

1∫
z

dz′

z′
Θ

(
(1− z′)k2

T

(1− z)2q̄2
− z′

)

×
∫

dq′2

q′2
Θ
(
k2

T − q′2
)
Θ
(
q′ − z′q̄

)}
. (2)

Please note the presence of the function θ( k2
T

(1−z)q̄2 − z). The authors of [5]

solve the CCFM at small z limit, therefore, the function θ(
k2

T
(1−z)q̄2 − z) is

neglected and in most of the phenomenological and theoretical applications
of the CCFM this term is neglected [4, 12–18]. The following form of non-
Sudakov form-factor is usually being used:

∆NS (z, kT, q̄) = exp

−αS

z0∫
z

dz′

z′

∫
dq′2

q′2
Θ
(
k2 − q′2

)
Θ
(
q′ − z′q̄

)
= exp

(
−αS log

(z0

z

)
log

(
k2

z0zq̄2

))
, (3)

where z0 = 1, if (kT/q̄) ≥ 1; z0 = kT/q̄, if z < (kT/q̄) < 1; z0 = z, if
(kT/q̄) = z. The discussed above θ-function is not taken into account.

1.3. Saturation effects and kinematical constraint combined

To account for gluon recombination at large gluon densities, the CCFM
equation has been promoted to non-linear equation by including a quadratic
term [6–8] and it reads:

A(x, kT, p) = A0(x, kT, p) + ᾱS

∫
d2q̄

πq̄2

1−Q0
q̄∫

x

dz θ

(
k2

T

(1− z)q̄2
− z
)
θ(p− zq̄)

×P(z, kT, q̄) ∆S(p, zq̄)
(
A
(x
z
, kT

′, q̄
)
− δ

(
q̄2 − k̄2

T

)
q̄2 A2

(x
z
, q̄, q̄

))
, (4)

where k̄T = kT/(1 − z) and we included the kinematical constraint of the
form (2) in the kernel. Simpler versions of the equation above have been
already analyzed in [11], and it has been observed that the equation leads
to phenomenon called saturation at the saturation scale [11, 16] and the
saturation strongly suppresses the gluon density at low x and low kT. The
natural question arises how these results are modified when some of the
approximations are not taken and how they are modified if the kinematical
effect is imposed in the full form.
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2. Numerical results

2.1. Linear equations

We use an initial condition which includes resummed virtual and unre-
solved contributions, according to [11] and [17], in the form A0 (x, kT, p) =
A∆R(x, kT)∆S(p,Q0)/kT, with A = 1/2 and ∆R(z, kT) is the Regge form-
factor.

The observation we make from the plots (like plots in Fig. 1) is that the
solutions of equations we study differ significantly. The solutions exhibit
also similar features. Solutions of both versions of the kernel with kine-
matical constraint exhibit a local maximum as functions of kT and p. The
positions of local maxima in the plots of p dependence are correlated with
the value of kT, with a shift to higher kT for the solution of the equation
with kinematical constrain θ-function included. The peak can be explained
by the fact that the contribution of the integral on the right-hand side of the
equation peaks at around kT ∼ p. The peak, therefore, is a result of pres-
ence of θ (p− zq̄) — angular ordering condition. Similar peaks are present
also in the plots of kT dependence and resemble Sudakov suppression of kT

scales of the order of p [19]. However, in the case without the θ-function, it
seems that the position of the peak does not depend on the value of p. The
peak observed in solution of the equation without kinematical constraint
θ-function is ‘hidden’ under the result of the evolution. We can conclude
that the peak in the kT dependence is an interplay result of inclusion of the
explicit kinematical contraint via θ-function factor and the Sudakov effect.
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Fig. 1. Relative ratio of CCFM and KGBJS solutions. Distributions with definite p
for varying value of kT.

2.2. Non-linear equation

We set the parameter characterizing the strength of the non-linear termR
the value R =

√
1/π GeV in equation (4). By comparing the CCFM

and KGBJS equations, we see that the kinematical constraint suppresses
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the growth of the gluon so much that the non-linear effects enter only at
very low x. Observations made in previous paragraphs are confirmed in
2-dimensional plots (Fig. 2), where we plot absolute relative difference of
two amplitudes, solutions of the CCFM and KGBJS equations, defined by
the quantity

β (x, kT, p) =
|ACCFM (x, kT, p)−AKGBJS (x, kT, p) |

ACCFM (x, kT, p)
. (5)

The function β (x, kT, p), introduced before in [11], can be used to measure
the strength of the non-linear effects and to define a saturation scale using
the conditions:

β (x,Qs (x, p) , p) = const. , β (x, kT, Ps) = const. (6)

The second condition in (6) defines p-related saturation scale.
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Fig. 2. Relative ratio of CCFM and KGBJS solutions. Distributions with definite p
for varying value of kT.

The conditions above, can be seen as equipotential lines in the plots in
Fig. 2, where different equipotential lines correspond to different constants
on the right-hand side of the equation above. The change in the slope of the
β(x,Qs(x, p), p) at around kT = p reported in [11], can be seen clearly in
Fig. 2, and can be understood in the context of the peak at p ∼ kT (Fig. 1).

By comparing the plots in Fig. 2 to analogous plots in [11], we see that
the main features are very similar. We, therefore, conclude that the low-x
approximation of the KGBJS and CCFM equations taken in [11] does not, at
least, modify the relative difference between linear and non-linear equation.
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