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Hydrodynamic modelling of quark–gluon plasma requires sophisticated
numerical schemes that have low numerical viscosity and are able to cope
with high gradients of energy density that may appear in initial conditions.
We propose to use the Godunov method with an exact Riemann solver for
ideal hydrodynamic modelling to meet these conditions. We present the
results of numerical tests of the method, such as the sound wave propaga-
tion and the shock tube problem, which show both high precision of the
method and low numerical viscosity.
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1. Introduction

Creation of the quark–gluon plasma and its expansion in heavy-ion col-
lisions are phenomena widely studied both theoretically and experimentally.
The hot and dense matter expands rapidly and it has been seen that the
expansion can be very successfully modelled hydrodynamically [1,2]. In the
present paper, we will briefly introduce the equations of relativistic hydro-
dynamics. Then, we will explain the numerical scheme for hydrodynamic
modelling of heavy-ion collisions which we have developed. We show results
of various numerical tests and argue that the scheme is suitable for such
modelling.
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2. Hydrodynamic modelling

2.1. Relativistic hydrodynamics

Ideal relativistic hydrodynamic equations have the following form:

∂µn
µ = 0 , (1)

∂µT
µν
(0) = 0 , (2)

where nµ is the flow of a conserved charge. The relevant charge in nuclear
collisions is usually the baryon number with the density nB. Its flow is given
as nµ = nBu

µ, where uµ = γ(1, ~v ) is the flow velocity and γ = 1/
√

1− v2 is
the Lorentz factor. Our model covers nuclear collisions at highest energies,
where the net baryon density is practically zero. Therefore, we will not
consider the first equation at all and solve only the second equation that
expresses the conservation of energy and momentum. There, Tµν(0) is the
energy and momentum tensor in non-dissipative case, with the explicit form

Tµν(0) = (ε+ p)uµuν − pgµν , (3)

where ε is energy density, p is pressure and gµν = diag(1,−1,−1,−1) is
the Minkowski metric. Equation (2) can be rewritten in a different form,
useful for numerical implementation, where we employ a vector of conserved
variables U and spatial flow of the conserved variables F (U)

∂tU + ∂xF (U) = 0 , (4)

where

U =
(
(ε+ p)γ2 − p, (ε+ p)γ2v1, (ε+ p)γ2v2, (ε+ p)γ2v3

)T
, (5)

F i =
(
(ε+ p)γ2vi, (ε+ p)γ2viv1 + δi1p,

(ε+ p)γ2viv2 + δi2p, (ε+ p)γ2viv3 + δi3p
)T
. (6)

2.2. Numerical scheme

Equation (4) is solved numerically by discretization of space into cells.
We use the Godunov method with an exact Riemann solution at the inter-
face. To obtain the value of conserved variables U , at the next time step,
we solve a local Riemann problem at each boundary between neighbouring
cells using linearly reconstructed variables in each cell. Its solution allows
us to compute fluxes of conserved variables F (U) at the interface [3,4]. For
a given cell, we then obtain the values of conserved variables at the next
time-step by averaging the fluxes on the left and right boundary of the cell

U t+∆t
i = U ti +

∆x

∆t

(
Fi+1/2 − Fi−1/2

)
, (7)
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where U ti is the value of a variable in the ith cell at time t, and Fi−1/2(Fi+1/2)
is the flux at its left (right) boundary.

3. Numerical tests

3.1. Sound wave propagation

For sound wave propagation test, we simulate a sound wave over one
wavelength in the numerical grid by imposing the following initial conditions:

pinit(x) = p0 + δp sin
2πx

λ
,

vinit(x) =
δp

cs(ε0 + p0)
sin

2πx

λ
, (8)

with parameters p0 = 103 fm−4, δp = 10−1 fm−4. Since the variation of
pressure is sufficiently small δp � p0, we can consider the linearized ana-
lytic solution, which is a sound wave of velocity cs. The existence of the
analytic solution allows us to evaluate the precision of our numerical scheme
by comparing this solution to the values obtained by numerical computa-
tion. The precision is studied with L1 norm evaluated after one cycle, that
corresponds to the period of the wave, with different numbers of cells in the
numerical grid Ncell [5]

L (p (Ncell) , ps) =

Ncell∑
i=1

|p(xi;Ncell)− ps(xi)|
λ

Ncell
. (9)

The dependence of L1 norm on the number of cells is shown in the left panel
of Fig. 1. The precision improves with finer discretization, as expected, and
is similarly good as in other schemes presented in [5]. The numerical com-
putation introduces dissipation into our solution even though we are solving
ideal hydrodynamic equations. Since quark–gluon plasma is expected to
have very low viscosity, we have to keep the artificial dissipation due to nu-
merical scheme very low. We have evaluated the numerical viscosity of the
scheme ηnum, using the L1 norm

ηnum = − 3λ

8π2
cs(ε0 + p0) ln

[
1− π

2λδp
L(p(Ncell), ps)

]
. (10)

The dependence of numerical viscosity ηnum on the number of cells in the
grid is shown in the right panel of Fig. 1. Similarly to the dependence of
L1 norm, it decreases with the number of cells and its values are adequately
small. We have also estimated a more suitable parameter — the ratio of
numerical viscosity and entropy density in our scheme ηnum/s. We present
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its values in Fig. 2 together with values of η/s for pion gas [6] and the
limiting value of η/s for quark–gluon plasma from AdS/CFT calculations
1/4π [7].

Fig. 1. Dependence of L1 norm (left) and numerical viscosity ηnum (right) on num-
ber of cells in the numerical grid.

Fig. 2. Dependence of the numerical viscosity to entropy density ratio ηnum/s

(black/blue points) compared to the limiting value η/s = 1/4π (thin/red line) and
η/s of pion gas (grey/green band).

3.2. Shock tube problem

The shock tube problem is designed to test the capability of the scheme
to cope with discontinuities in energy density. It consists of imposing special
initial conditions in the numerical grid with two constant states separated
by a discontinuity. The imposed energy density in the left (right) half is:
εL = 1 GeV (εR = 20 GeV). The initial normal velocity is vx = 1/2c over
the whole grid, the tangential velocity varies from the left to the right half:
vt

L = 1/3c, vt
R = 1/2c. With time, we expect to see the dissolution of the

discontinuity into a rarefaction wave propagating to the right, to the region
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of higher energy density, and a shock wave propagating to the left, where
energy density is lower. The shock tube problem has an analytic solution,
which allows a good comparison between the numerical and exact solution.

In the left panel of Fig. 3, we show the profile of energy density in the
grid after 100 time-steps. We see that the numerical solution (blue crosses)
reproduces the analytic solution (black dashed line) accurately. The scheme
is able to handle the initial discontinuity very well, which is also displayed
in the right panel of Fig. 3 where the profile of normal velocity is shown
after 100 time-steps. In Fig. 4, we compare the accuracy of the scheme

Fig. 3. Profile of energy density ε (left) and normal velocity v (right) in the numer-
ical grid after 100 time-steps (our scheme — blue croses, analytic solution — black
dashed line).

Fig. 4. Profile of tangential velocity vt using a piecewise constant distribution of
variables (left) and using a linear reconstruction of states (right) in the numerical
grid after 100 time-steps (our scheme — blue crosses, analytic solution — black
dashed line).
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with and without the linear reconstruction of data. The difference is best
seen in the profile of tangential velocity after 100 time-steps. The left panel
of Fig. 4 shows this profile (numerical solution — blue crosses, analytic
solution — black dashed line) with piecewise constant distribution of data,
while the right panel shows the profile using the linear reconstruction, which
clearly obtains better results, having only minor problems at the tail of the
rarefaction wave.

4. Outlook

We have built and tested an ideal relativistic hydrodynamic scheme based
on the exact solution of Riemann problem. The presented tests in one spatial
dimension with presence of tangential velocity show a good resolution and
ability to capture shock and rarefaction very well. We will extend this
scheme to three dimensions and then apply it in a description of the flow in
ultrarelativistic nuclear collisions.
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