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SOME CONSIDERATIONS ABOUT PHOTONS∗
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I discuss photon production from the Glasma. In particular, I outline
the consequences of a power law tail in the distributions of quarks and
gluons for the photon production rates and for the times scales of evolution
within the Glasma.
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1. A simple model for the Glasma

In what follows, I will construct a simplified model of the Glasma that
illustrates some simple features of the Glasma, and may be useful for phe-
nomenological applications [1]. I will assume that distributions are approx-
imately isotropic and, again, the considerations presented here might be
generalized to the anisotropic case.

Let us begin with the definition of the gluon distribution function

1

τπR2

dN

d3p
= f(p) , (1)

where R is the transverse size of the system, and τ is the proper time.
For a non-expanding system, the proper time is just the time, but for a
longitudinally expanding system, τ =

√
t2 − z2. We take as initial conditions

f(p) ∼ 1

αS
, p ≤ Qsat (2)

and
f(p)→ 0 , p ≥ Qsat . (3)
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At some point, the distribution function must go to zero and will have a
value of the order of 1, so we see that the UV scale is defined from

f(ΛUV) ∼ 1 . (4)

Generically, the transport equation for a highly occupied Bose gas, with
f � 1 is of the form

df

dt
∼ α2

S f
3 . (5)

Implicit in this relationship are integrations on the right-hand side of the
equation with weight associated with the scattering kernel. The factor of α2

S
is the coupling strength. In scattering, there are two particles in the initial
and two particles in the final state, so we would naively expect that the
scattering term in the transport equations to be of the order of f4, but this
leading term cancels in the forward and backward going processes leaving a
term of the order of f3.

Let us assume that the distribution function is classical for E � ΛUV,
then

f ∼ 1

αS

ΛIR

E
. (6)

More generally, we can write

f ∼ 1

αS

ΛIR

ΛUV
f(E/ΛUV) . (7)

Now, plugging this into the transport equation and integrating over mo-
mentum gives an equation

d

dt
ΛIRΛ

2
UV ∼ Λ3

IRΛUV . (8)

Taking

1/t ∼ 1

ΛIRΛ2
UV

d

dt
ΛIRΛ

2
UV , (9)

we can identify the scattering time as

tscat ∼
ΛUV

Λ2
IR

. (10)

Note that the coupling constant has entirely disappeared from this equa-
tion. One can show that this form of the time dependence persists when
one includes higher order corrections associated with the inelastic particle
production.
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If there is a Bose condensate present then, there is a term in the transport
equation associated with scattering from a condensate. In this case, the
dependence upon the infrared and ultraviolet scales for the scattering time
is different, but can also be explicitly obtained.

The relationship between the dynamical scale and the scattering time,
t ∼ tscat gives one equation determining the evolution of the scales. The
other equation is energy conservation. The energy density is

ε ∼ 1

αS
ΛIRΛ

3
UV . (11)

The solution to these equations in a fixed box or an expanding box gives
power law dependences in time for the infrared and ultraviolet scale.

It is useful to consider a simple model for the Glasma that is explicit
and has the properties described above. Let us take the gluon distribution
function to be an over-occupied Bose–Einstein distribution [1]

f(p) =
γ(t)

eE/Λ(t) − 1
. (12)

In this form, we see that Λ is an effective temperature, and that Λ = ΛUV.
The factor γ is the over-occupation factor for the Bose–Einstein distribution.
For a thermally equilibrated distribution, γ = 1. For the Glasma, we take

γ =
1

αS

ΛIR

ΛUV
. (13)

At some time in the evolution,

γ(t) = 1 . (14)

At this time, the system is thermal, and tth is determined from

T = ΛUV(tth) . (15)

Beyond this time, γ(t) = 1, but the temperature may evolve.
The entropy density of these over-occupied distributions is

s =

∫
d3p {(1 + f) ln(1 + f)− f ln(f)} ∼ Λ3

UV ln

{
ΛIR

αSΛUV

}
. (16)

On the other hand, the number density of gluons is

ρ ∼ 1

αS
ΛIRΛ

2
UV . (17)
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The entropy per particle becomes

s/n ∼ αS ΛUV/ΛIR . (18)

This means that early on when the system is highly coherent, the entropy
per particle is small. By the time of thermalization, the entropy per particle
has become of the order of 1.

We can also estimate the quark to gluon number density. We take for
the quark distribution function

fquark =
1

eE/Λ(t) + 1
. (19)

The quarks cannot be over-occupied because they are fermions. We assume
the UV scale is the same for quarks and gluons. The total number of quarks
is of the order of

q ∼ Λ3
UV . (20)

This means that the ratio of quarks to gluons is

q/g ∼ αS ΛUV/ΛIR (21)

and like the entropy to gluon ratio, it begins small but at thermalization
has achieved a ratio of the order of one. This underabundance of quarks at
early times has no relationship to the rate of quark production. It simply
reflects the overabundance of gluons, and that Fermi statistics forbid the
over-occupation of fermions.

2. Saturation, the Glasma, and photons

If both the Glasma and the Thermalized Quark–Gluon Plasma obey ap-
proximate hydrodynamic behaviour, it will be difficult to disentangle which
is the source of bulk properties of matter produced in heavy ion collisions.
As suggested by Shuryak many years ago, the internal dynamics of an evolv-
ing QGP might be best addressed by looking at penetrating probes such as
photons and dileptons. These particles can probe the internal dynamics of
the QGP and, in principle, resolve the difference between a Glasma and a
Thermalized QGP. It is not easy however, as most experimental observables
have significant contributions from other sources, such as the matter pro-
duced at late times as a hadron gas, and from the fragmentation of produced
jets into photons.

Nevertheless, we can first try to see if saturation dynamics has anything
to do with photon production. We can first see whether or not the available
photon data has geometric scaling. This should be a generic feature of
emission from the Color Glass Condensate and early time emission from
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the Glasma. In these cases, the only scale in the problem is the saturation
momentum. We, therefore, expect that the distribution of photons will be
of the form

1

πR2

d2N

dyd2pT
= F

(
Qsat

pT

)
. (22)

The saturation momentum for nucleus–nucleus collisions is determined by

Q2
sat = N

1/3
part

(
E

pT

)δ
. (23)

Here, Npart is the number of nucleon participants and δ ∼ .22–.28 is de-
termined by both fits to deep inelastic scattering data and high energy pp
interactions.

When these ideas are applied to the RHIC and ALICE data on photon
production, they convert results from different beams, energies and centrali-
ties, which vary over 4 orders of magnitude, into a single scaling curve. The
agreement with geometric scaling is very remarkable.

The underlying mechanism behind this remarkable scaling behaviour
might be jet production and fragmentation into photons. Such a fragmen-
tation process should be approximately scale invariant, and would preserve
the geometric scaling of the initial conditions in the Color Glass Condensate.

We can also try to describe photon production using the Glasma. Schenke
and I used the known lowest order formula for photon production, with the
distribution functions replaced by the over-occupied distribution functions
above. The result is that one can obtain a good description of the spectrum
of produced photons in the 1–4 GeV transverse momentum range. To do
this requires a factor of 5–10 increase in the rates relative to the computed
rates. Similar results with related mechanisms are found in the semi-QGP
analysis. The Thermalized QGP computations with realistic hydrodynamic
simulation are off by a factor of 2–5, so this is a common problem for both
computations.

The remarkable result of the photon measurements at the RHIC and
LHC is the observation that photons flow almost like hadrons. This is dif-
ficult to achieve in Thermalized QGP computations of photon production.
This is because the photons are produced early before much flow develops.
It might be that such photons are produced late in the collision, but then it
would be difficult to explain the geometric scaling seen in the data. At very
late times, there are scales of the order of ΛQCD which become important.
The Glasma is producing significant entropy per gluon during its expansion,
and therefore cools more slowly than does a Thermalized QGP. This allows
more time for flow to develop. It is possible to get acceptable flow from the
Glasma emission, at the expense as mentioned above, of reducing rates of
photon emission which are already somewhat low.
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3. A power law tail for the quark and gluon distributions

We will study the effect of power law non-thermal tails, implemented
by replacing the modified Bose–Einstein and Fermi–Dirac distributions of
the Glasma by the corresponding Tsallis distribution [2]. This will have a
significant effect on photon yields and typical emission times: As opposed
to most other mechanisms that have been suggested to resolve the thermal
photon puzzle, photon emission times are delayed and, at the same time,
production rates are increased. This could resolve the puzzle by generating
both increased photon yields and elliptic flow.

To compute the photon yield from an expanding ideal gas in 1+1 dimen-
sions, we integrate this rate over time using the time dependence of the
temperature, which for an ideal gas of relativistic quarks and gluons is given
by

t/t0 = T 3
0 /T

3 . (24)

The four volume is ∫
d4x = AT

∫
t dt , (25)

where AT is the transverse area of the interaction region. Since

t dt ∝ dT

T

1

T 6
, (26)

upon inserting the rate at a given T into the integral over the expanding
system, we get

Eγ
dNth

d3p
∝
∫
dT

T
exp[−Eγ/T − 4 ln(T/T0)] . (27)

By determining the stationary point of the exponent, we obtain the typical
emission energy for photons to be

Eγ ∼ 4T (28)

up to logarithmic corrections. (The best way to do the stationary phase
distribution is in logarithmic coordinates, χ = ln(T/T0), where dT/T = dχ.)

This emission occurs when we are in the tail of the exponential distribu-
tion.

Let us now suppose that the quark and gluon distributions were not
purely Bose–Einstein or Fermi–Dirac distributions. Since emission occurs at
somewhat hard momenta, we might expect the distributions would be well
approximated by an exponential with a power law tail. An example which
has this property is the Tsallis distribution,

f(E) = [1 + E/(aT )]−a , (29)
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where E is the quark or gluon energy, and a is a free parameter that de-
termines the power law at large E. For E � aT , this distribution is well
approximated by an exponential, f ∼ e−E/T , but for large energy, it goes
as f ∼ (E/aT )−a. For a thermal distribution undergoing 1+1 dimensional
Bjorken expansion, the integral

ρ =

∫
d3p f ∼ 1/t , (30)

as it should for a non-interacting gas. For proton+proton collisions, the mea-
sured distribution of produced charged particles is approximately a Tsallis
distribution with a ≈ 6.

Note that the distribution (29) tends to 1 as E → 0. At high pT on
the other hand, this distribution scales as (T/E)a. The dependence of the
multiplicity upon the number of participants at any time t is

dN

d3p
= A2/3f , (31)

where A is the number of participating nucleons. So for low energies, where
f → 1, the multiplicity distribution scales as the number of participants.

However, at high energies, it scales as A2/3T a. In saturation models, the
initial temperature scales like T ∼ A1/6 so that for a ∼ 6, we get a very
rapid A5/3 growth in the multiplicity.

Note also that the low momentum part of the distribution does not evolve
very rapidly in time, while the high momentum piece falls as t−a/3 so that
for a = 6 it fall as f ∼ 1/t2 at fixed E. This is, however, less rapid than
e−(t/t0)1/3 for the Boltzman distribution. This means, there can be more
radiation at later time.

These considerations suggest that introducing power law tails for quark
and gluon distributions can enhance the photon radiation rate and allow
the radiation to appear at later times. At later times, more flow will have
been built up and the produced photon spectra will reflect that. Hence, this
mechanism has the potential to solve the photon flow problem discussed in
the introduction.

To understand how the tails might affect the observed distributions of
photons, let us consider the radiation from an exponential distribution and
compare it to that of a Tsallis distribution. For the following estimate,
we simply replace the photon distribution by a Tsallis distribution. We
will improve on that by replacing quark and gluon distributions by Tsallis
distributions and recomputing the photon rate in the following section.
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Let us take the formula for thermal radiation as a pure exponential,
ignoring logarithms and constant factors and integrate it over time

h =

∫
dT

T

T 4
0

T 4
e−Eγ/T = Γ (4)

T 4
0

E4
γ

. (32)

This assumes that the temperature of emission T ∼ Eγ/4 is within the range
of integration over temperatures. Now, take a Tsallis distribtuion

g =

∫
dT

T

T 4
0

T 4
(1 + Eγ/aT )

−a . (33)

The stationary phase point of the integral is at

Eγ/T =
4a

a− 4
. (34)

For a = 6, this is 12, corresponding to a large change in the temperature
of emission, which would make for a huge shift in the emission time, which
goes as the cube of the temperature. Clearly, such a big shift would move
the emission outside of the range of integration over temperature where the
QGP assumption is motivated, which will reduce this effect. Notice also
that the value of the integrand at the stationary phase point is 256/9 which
is much greater than the corresponding numerical factor for a Boltzman
distribution.
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