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We investigate four-quark systems consisting of two heavy anti-bottom
quarks and two light up/down quarks. We propose to solve a coupled
Schrödinger equation for the anti-bottom–anti-bottom separation using po-
tentials computed via lattice QCD in the limit of static anti-bottom quarks.
This coupled Schrödinger equation allows to incorporate effects due to the
heavy anti-bottom spins. First exploratory numerical tests are discussed.
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1. Introduction

In recent papers [1–5], we have studied heavy tetraquark candidates com-
bining lattice QCD and quark model techniques proceeding in two steps.
First, we have computed potentials of two static antiquarks Q̄Q̄ in the pres-
ence of two quarks of finite mass qq (q ∈ {u, d} throughout this work) using
lattice QCD [1,2] (such potentials have also been computed by other groups,
cf. e.g. [6–12]). The static approximation is expected to be a rather good
approximation for Q̄Q̄ = b̄b̄ and allows for a comparably easy computation
of the potentials. For larger Q̄Q̄ separations, some of these potentials can
be interpreted as potentials of two B and/or B∗ mesons, which are degen-
erate in the static limit. In a second step, we have inserted these potentials
into the Schrödinger equation for the relative coordinate of the two B/B∗
mesons. We have then checked, whether they are sufficiently attractive to
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host bound states, which would indicate stable qqb̄b̄ tetraquarks. For a spe-
cific potential (isospin I = 0, light quark spin j = 0), we have found a bound
state with a confidence level ≈ 2σ and binding energy ≈ 90 MeV, while there
seems to be no bound state in any of the other channels [3, 5].

In the static limit effects due to the spin of b̄ quarks are neglected, e.g.
there is no mass difference of B and B∗ for infinitely heavy b̄ quarks. These
effects, however, could be of the same order as the ≈ 90 MeV binding energy
of the tetraquark predicted in [3,5], as can e.g. be estimated from the mass
difference mB∗ −mB ≈ 50 MeV. The goal of this work is to take the heavy
b̄ spins into account, in particular, to estimate their effect on the binding
energy of the above mentioned (I = 0, j = 0) qqb̄b̄ tetraquark.

2. Incorporating heavy b̄b̄ spin effects

2.1. Relating qqQ̄Q̄ potential and B(∗)B(∗) creation operators

Due to static quark symmetries, it is essential to couple the light spin
indices and the static spin indices separately, when defining qqQ̄Q̄ potential
creation operators. To interpret the meson–meson structure generated by
such operators, one needs to express them in terms of static-light bilinears.
We do this by using the Fierz identity1
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where A,B,C,D denote spin indices, Γ a ∈ {γ5, γ0γ5,1, γ0, γj , γ0γj , γjγ5,
γ0γjγ5} and Γa is the inverse of Γ a. The left-hand side of this equation has
the structure of a qqQ̄Q̄ potential creation operator (cf. e.g. [5], Eq. (6)),
while the right-hand side allows to read off, which linear combination of
B meson pairs it excites.

In the following, we are interested in those matrices L and S generating B
and/or B∗ mesons (Q̄(1+γ0)γ5q and Q̄(1+γ0)γjq, respectively). After some
linear algebra, one finds that there are 16 such combinations, L, CSTC ∈
{C(1+ γ0)γ5, C(1+ γ0)γj} (C denotes the charge conjugation matrix). The
qqQ̄Q̄ potentials, which have been computed in the static limit, depend only
on the light spin coupling L, but not on the heavy spin coupling S. There
are two different potentials: (1) V5(r) (corresponding to L = C(1 + γ0)γ5),
attractive for isospin I = 0, repulsive for isospin I = 1, and (2) Vj(r)
(corresponding to L = C(1 + γ0)γj), repulsive for isospin I = 0, attractive
for isospin I = 1, where r = |~r1 − ~r2|.

1 Similar techniques have recently been applied to relate meson–meson and diquark–
antidiquark creation operators [13].
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Note that it is not possible to choose S and L in a way that exclusively
B mesons appear on the right-hand side of Eq. (1). One always finds linear
combinations of B and B∗ mesons, e.g. for L = CSTC = C(1 + γ0)γ5 the
right-hand side of Eq. (1) is proportional to B(~r1)B(~r2) + B∗x(~r1)B

∗
x(~r2) +

B∗y(~r1)B
∗
y(~r2) +B∗z (~r1)B

∗
z (~r2) (the indices x, y, z denote the spin orientation

of B∗). Taking this mixing of B and B∗ mesons into account, which differ
in mass by ≈ 50 MeV, is the goal of this work, as already mentioned in the
introduction.

2.2. The coupled channel Schrödinger equation

We study a coupled channel Schrödinger equation

HΨ (~r1, ~r2) = EΨ (~r1, ~r2) , (2)

where the Hamiltonian H acts on a 16-component wave function Ψ . The
components of Ψ correspond to the 16 possibilities to combine (B(~r1), B

∗
x(~r1),

B∗y(~r1), B
∗
z (~r1)) and (B(~r2), B

∗
x(~r2), B

∗
y(~r2), B

∗
z (~r2)), i.e. the first component

corresponds to B(~r1)B(~r2), the second to B(~r1)B
∗
x(~r2), etc.

The Hamiltonian can be split in a free and an interacting part, H =
H0 +Hint. The free part is given by

H0 = M ⊗ 1+ 1⊗M +
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1

2
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2

2
(1⊗M)−1 (3)

with M = diag(mB,mB∗ ,mB∗ ,mB∗). The interacting part can be written
according to

Hint = T−1V (r) , (4)

where
V (r) = diag

(
V5(r), . . . V5(r)︸ ︷︷ ︸

4×

, Vj(r), . . . Vj(r)︸ ︷︷ ︸
12×

)
(5)

and T is a 16 × 16 matrix relating the 16 choices for L, S (cf. Section 2.1
and Eq. (1)) to the 16 components of Ψ (the entries of T can be computed
using the Fierz identity (1)).

3. Numerical solution of the coupled channel
Schrödinger equation

Rotational symmetry allows to bring the coupled channel Schrödinger
equation (2) to block diagonal form, i.e. to split it into independent simpler
equations corresponding to definite total spin J and isospin I 2:

2 J and I are related, because quarks are fermions and have to obey the Pauli principle
(cf. [5] for a detailed discussion of quantum numbers of qqb̄b̄ tetraquarks).
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— a single 2× 2 coupled channel equation:
J = 0, I = 1, meson pairs B(~r1)B(~r2) and B∗(~r1)B∗(~r2);

— three identical 1× 1, i.e. uncoupled equations:
J = 1, I = 1, meson pairs B(~r1)B

∗(~r2) and B∗(~r1)B(~r2);

— three identical 2× 2 coupled channel equations:
J=1, I=0, meson pairs B(~r1)B

∗(~r2), B∗(~r1)B(~r2) and B∗(~r1)B∗(~r2);

— five identical 1× 1, i.e. uncoupled equations:
J = 2, I = 1, meson pairs B∗(~r1)B∗(~r2).

For the remainder of this section, we focus on the J = 0 coupled channel
equation, where
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Introducing center of mass and relative coordinates, the partial differential
equation in ~r1 and ~r2 can analytically be reduced to an ordinary differential
equation for r,((

2mB − 1
mB
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dr2
0
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)
χ(r) = Eχ(r) , (8)

where the first component of χ represents a B(~r1)B(~r2) pair and the second
component a B∗(~r1)B∗(~r2) pair. Following standard textbooks on quantum
mechanics, one can show that the radial wave function of an s wave bound
state is subject to the boundary conditions

χ(r) ∼
(
Ar
Br

)
as r → 0 , lim

r→∞
χ(r) =

(
0
0

)
(9)

with A,B ∈ R.
First exploratory numerical tests have been performed with I = 0 po-

tentials3, i.e. with an attractive V5 and a weakly repulsive Vj . We integrate
Eq. (8) using the Runge–Kutta–Fehlberg method starting with the linear
asymptotic behavior (9) at tiny r = ε > 0 to r = rmax with sufficiently

3 Even though this (J = 0, I = 0) channel is excluded by the Pauli principle, it is
conceptually interesting to compare numerical results with existing results from [3,5],
where heavy spin effects have not been taken into account.
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large rmax
>∼ 10 fm. This integration is iterated many times as part of a

standard shooting procedure to find parameters A/B and E such that also
χ1(rmax) = χ1(rmax) = 0 is fulfilled.

In Fig. 1, we show results obtained with an unphysically strong attrac-
tive potential V5 (roughly a factor 1.5 stronger than the lattice QCD result
for V5). The intersection of the red line (squares) and the green line (circles)
at E ≈ 10.4 GeV corresponds to χ1(rmax) = χ1(rmax) = 0, i.e. represents an
energy eigenstate. Since E < 2mB ≈ 10.6 MeV (2mB is the upper boundary
of the plot), this eigenstate is a bound four quark state.
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Fig. 1. Isolines χ1(rmax) = 0 (red squares) and χ2(rmax) = 0 (green circles) in the
A/B–E plane (for unphysically strong attractive potential V5).

When repeating these calculations with crude fits to the lattice QCD
results for V5 and Vj , the situation is less clear, i.e. E ≈ 2mB. A more
careful analysis and treatment of statistical and systematic errors similar to
what has been done in [5] is needed, to confirm or rule out a bound state.
In any case, one can conclude that the heavy b̄b̄ spins counteract four-quark
binding.

4. Outlook

Most interesting will, of course, be an investigation of the physical chan-
nels listed at the beginning of Section 3, in particular the (J = 1, I = 0)
channel, which has a stronger attractive potential than the I = 1 chan-
nels. We are currently in the process of studying corresponding Schrödinger
equations for all these channels.
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