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Solution of Schwinger—Dyson and Bethe—Salpeter equations for excited
mesons in Minkowski space in the ladder-rainbow approximation is pre-
sented. The invalidity of Wick rotation, which historically raised the ques-
tion, does not prevent the existence of solution in the physical Minkowski
space. No analytical continuation in complex Euclidean spacetime was
needed in the presented model.
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1. Introduction

The physical spectrum of QCD theory is made out of hadrons with pos-
sibly small admixture of glueballs, tetraquarks and exotics. The most of
models based on Dyson—Schwinger equations (DSEs) and lattice calculations
unavoidably are defined in Euclidean space from the very beginning. With-
out doubt, both approaches implement confinement of quarks and gluons,
describe dynamical symmetry breaking and, up to date, they provide good
description of ground and low excited mesons [1-3|, weak mesonic decays and
electromagnetic form factors [4-8|. The results based on modern truncation
of DSEs have been recently derived for glueballs [9], tetraquarks [10,11] and
for nucleon and its excitations as well [12-14]. Recall here, most of mod-
els listed here are based on the UV-improved Stainsby—Cahill kernel [15],
the model which has not removable singularity at the timelike ultraviolet
momenta.

2. Ladder-rainbow DSE/BSE model for pions

In this contribution, I will present two types of the solutions of DSE/BSE,
both are based on the ladder-rainbow approximation. The first is described
in paper [16], while the details of the second can be found in [17].

* Presented at “Excited QCD 2015”, Tatranska Lomnica, Slovakia, March 8-14, 2015.
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As mentioned above, the Minkowski metric is employed. The scalar
product of two four-vectors is defined as p - ¢ = g,,p*q¢” with metric g, =
diag(1,—1,—1,—1,—1), thus square of momentum p? is negative for space-
like configuration.

In order to get the meson spectrum from BSE, one first solves the gap
equation (another name for quark DSE), whose solution is required to com-
plete BSE kernel, and then solve the BSE for pion and all its radial excita-
tion. The propagator satisfies the DSE, which reads in momentum space

S7Hp) = Za p— Zamg(n) — Z12(p)

4 a
20) = i [ i Gl = 5 SO p.0). (1)

where m(u) is the renormalized quark mass at the scale u, I'¢(p, q) is the
quark—gluon vertex satisfying its own SDE and G, is gluon propagator.

The BSE vertex function Iy, (p, P) as well as the BSE wave function
x(k,P) = S(ky)I'(k,P)S(k_) is a solution of bound state BSE

4
ri,.p) =i %K(k,p, P)x(k, PY, | (2)

where K (k,p, P) is the renormalized quark—antiquark interaction kernel and
the total momentum satisfies P2 = mfrn. Strictly speaking, the homogeneous
BSE (2) represents narrow mass approximation at the resonance mass for
P? =m2 | where my, is the mass of the pion (for n = 1) or of the arbitrary
excitation 7(1300), 7(1800),. . . Ignoring the resonance width has two techni-
cal advantages, the first is that one does not need to solve more complicated
inhomogeneous set of coupled BSEs. The second is that it allows to consider
heavy resonant states as physical asymptotic states including thus many of
those which will be never observed, since the corresponding wide resonant
peak is completely hidden in the background of given experimental channel.
The latter property can be exploited when testing the old-fashionable idea
of Regge trajectories.

The rainbow-ladder approximation, which preserves pseudo-Goldstone
boson character of ground state pion, enables us to write down the effective
charge a

2
g
(ks p) Gy (k= p) — PG (k = p)alk - p), (3)
defined as a simplified product of the quark—gluon vertex and the gluon
propagator. The kernel of BSE and DSE must be identical. In the first
model [16], the kernel is
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where z = (p — k)2, C is an effective coupling strength and the scale a ~
1 GeV has been set from the pion mass M, = 140 MeV.
In the second model, the exponential fall in (4) has been suppressed by

power of z~/2 only
d — a2) + gt
Ky(x) =~ [exp(zf)In <(Z>
2a5

T ()

for spacelike 2 = p?, where the function f is some log damping (for details,
see [17]). Further, the correct UV part

K()—Lill 2, i2 (6)
W\t = 332Ny 2rds o \" | 4ad

has been added as well. The kernel is consistent with the asymptotic freedom
approximated by one-loop perturbative tail in the deep spacelike ultraviolet.
However, the change in Ky affects the all Minkowski region of the solution
nontrivially and the dynamical mass M becomes oscillating in this model.
Remind here the conventional parameterization of the solution

S p) =pA(P*) - B(p*) =1/Z (p*) [p— M (p*)] (7)

for completeness.

The dynamical mass function is a complex function, providing there is no
real pole in the quark propagator. The solutions for the models are shown in
Fig. 1. To get the numerical solution of the QCD gap equation in Minkowski
space is a nontrivial task, and unhappily, the success of convergence does
depend on a numerical details which are not completely clear to the author.
As a random attempt usually fails, the author keeps the sample of working
codes available and public at [24].

The most striking difference between the models is not the oscillating
behavior of quark propagator, but the scale, which is as = 195 GeV for
the second model. However, it is quite interesting that the both models
provide very similar spectra, including few unphysical states (or rather say
experimentally unobserved states) as well. Furthermore, as a consequence
of refined numerical method in the second model, spectrum of very heavy
states is available. Actually, the Regge trajectory for radial excitations is
observed in the second model, while the author cannot state similar for the
first model due to the lost of numerical convergence.
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Fig. 1. Dynamical mass for the first (left) and for the second model (right).

Excited pions, Minkowski space

Excited QCD, Tatranska Lomnica

A 40 ... L. P P P LN 2500 - . E
! E 1 Experiment: E
E | .
r n(1882) *
ol n(1357) i ] .
E n1615) | m(2450) E
] Preliminary !
ooi /\ /\/\\J"V* "0 Cnum. fake) E
] n=160 . fak
[ = ofor c=1/9ﬂ w0 o (0RO
0@ | _
0.0001 o 3 E
3 1 n 1 n 1 n | n 1 k)
0.5 1 1.5 2 25
M/ a

Fig.2. Spectra for the first (left) and the second model (right).

To conclude, two models based on the ladder-rainbow truncation of DSEs
system were presented, both exhibit pionic spectra reasonably. The models
differ by the kernels, roughly say, they have different strength at interme-
diate momenta. Having no other hints at these days, both scenaria can be
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Fig.3. Graphs of numerical search shown at vicinity of pion mass (left) and global
view (right), both for the second model.
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considered as equal. Further effort is needed to distinguish, which will be
more reliable at the end. Unhappily, due to many unknowns, the calculation
of DSEs for gluon propagators, neither the equations for higher points QCD
vertices are not recently working numerically due to the lost of stability as-
sociated with Minkowski metric (according to the author’s pure experience).

3. Observable and unobservable

This short section is the answer due to Prof. Thomas Cohen, who raised
many interesting philoshopical questions during the conference.

Recall here that the production of QCD processes is the example where
lattice and Euclidean DSE calculations provide almost no results since the
physics there has predominantly timelike character. Most striking is the ex-
ample of the pion electromagnetic form factor. This single variable quantity
is measured very indirectly in the spacelike domain and must be recon-
structed there in a tricky way from the experimental data. On the other
hand, its form is accurately measured in the timelike domain in two pions
production for many decades (actually, vector meson dominance is a very
old idea). Theorists, at least the ones who prefer to work with QCD de-
grees of freedom, do exactly opposite, they can calculate pion form factors
at spacelike domain for decades. It is a matter of the fact that the tools do
not allow to perform analytical continuation of form factor building blocks
(QCD Green’s functions) and form factor itself easily [4-8].

Here, Green’s function is complex in the timelike domain as well as in the
spacelike, the latter property explicitly exhibits intrinsic inequivalence of the
quantum field theory with Euclidean and Minkowski metric as definite ones.
While the author generally believes that Euclidean approximation must be
a good one, the difference from usage of different metrics (within similar
approximations in DSEs system) can be expected. Whether there is some
nontrivial consequence for observable is a nontrivial task for a future.

In nonconfining theory, the observable made from unobservable Green’s
functions shares and remembers their analytical properties. Thus “correct
and usual” analyticity is ensured by the unitarity of S-matrix and vice versa,
and as a consequence, for instance, one gets form factors which are complex
only above the particle production thresholds. In QCD, the observable are
composed from Green’s functions in a nonperturbative way. The conse-
quences are less then trivial, and for instance, there is no tree level graph
contributing to any hadron transition matrix element. All quark and gluon
lines are presented in the loops only, further, they are sandwiched by appro-
priate BSE amplitudes — the hadrons that appear for asymptoticaly infinite
time. This is a consequence of confinement. The charge conservation and
chiral symmetry, together with the proper normalization of BSE states en-
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sures the reality and correct values of the form factors, say for instance
F(0) = 1,0 for charged or neutral mesons. However, there is no theorem,
which would forbid additional momentum-dependent phase of F(Q) else-
where. Actually, one can expect a presence of such redundant phases in
Minkowski space as remnant of confinement. They however should cancel
against each other in observable cross sections, o ~ F(Q)F*(Q).

Of course, another related question is what can, in principle, follow from
the oscillating character of propagators. Obviously, such propagators can
interfere in the amplitudes in complicated fashion and one such possible,
indirect but observable hint is discussed in the paper [17].

4. Summary

The excited states of pion have been calculated within DSEs formalism.
In addition to almost massless 140 MeV pion, we have found four or five ex-
cited states bellow 2.5 GeV. In the case of the second model, we were able to
show that the spectrum continues and shows up approximative Regge linear
trajectory for higher states. The main purpose of the presented paper is to
present the first Minkowski space nonperturbative calculation of light (in a
sense of light flavour) mesons. This was possible due to the special property
of Green’s functions describing confined quarks and gluons. In the case of
the second model, the numerical stability was enforced by analytical integra-
tion over the angular momenta. Even so, the approximations of DSEs are
limited by numerical convergence in Minkowski space, the presented model
is the example, where working directly in Minkowski momentum space gives
accurate and reliable results. It does not require (a numerically sometimes
impossible) analytical continuation of the data coming from the auxiliary
Euclidean space.

The main of the limitations of the method presented here is that it
relies upon the method of iterations. It is not a secret of the author that
many attempts to build an infrared kernel, which would define an alternative
ladder-rainbow DSEBSEs models otherwise, do not allow implementation of
the correct UV part known from perturbative QCD. In many cases, the iter-
ation process simply collapse before a wanted strength of the interaction is
achieved. The principal reason why some models lead to convergent solution
while the others do not, remains unknown to the author. While I expect
that many solutions in approximations already known and well studied in
the Euclidean space will be simply not available in momentum Minkowski
space due to the collapsing numerics, the ones giving fruits, should be ex-
tremely useful for our understanding. Future work, using an integral trans-
formations, which will allow to perform momentum integration analytically,
should clarify this unanswered technical question.
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