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Lattice QCD simulations tend to get stuck in a single topological sector
at fine lattice spacing, or when using chirally symmetric quarks. In such
cases, computed observables differ from their full QCD counterparts by
finite volume corrections, which need to be understood on a quantitative
level. We extend a known relation from the literature between hadron
masses at fixed and at unfixed topology by incorporating, in addition to
topological finite volume effects, also ordinary finite volume effects. We
present numerical results for SU(2) Yang–Mills theory.
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1. Introduction

In QCD simulations at small lattice spacings a . 0.05 fm, algorithms
typically have severe problems in generating transitions between different
topological sectors. This problem of topology freezing is expected to appear
for any lattice discretization of the quark and gluon fields [1,2]. For certain
discretizations, e.g. chirally symmetric quarks, this problem is even present
on coarser lattices [3, 4]. In specific cases, it might be motivated to fix
topology on purpose. For example, when using a mixed action setup with
light overlap valence andWilson sea quarks, one observes a rather ill-behaved
continuum limit [5,6]. This is due to near-zero modes of the Dirac operator
in the valence sector, which are not compensated by corresponding modes
in the sea. A possibility to circumvent this imbalance could be to restrict
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the lattice simulation to the topological charge Q = 0, where such near-zero
modes are absent, e.g. by employing topology conserving actions [7–9].

Methods to extract physically meaningful results from simulations at
frozen or fixed topology have been proposed [10, 11] and tested [12–22] in
various models and theories. In this work, we extend these methods by
including also ordinary finite volume effects. Such a combined treatment of
both fixed topology and ordinary finite volume corrections is expected to
be particularly important for QCD at light u/d quark masses. We test our
equations in SU(2) Yang–Mills theory at fixed topology.

2. Topological finite volume effects

In [10, 11], an equation has been derived relating a hadron mass MQ,V

obtained at fixed topological charge Q and finite volume V to its counter-
part M at unfixed topology (i.e. the physically meaningful hadron mass),

MQ,V =M +
1

2χtV
M ′′

(
1− Q2

χtV

)
+O

(
1

(χtV )2

)
, (2.1)

where M ′′ denotes the second derivative of M with respect to the θ angle at
θ = 0, and χt the topological susceptibility. This equation illustrates that
fixed topology corrections are finite volume effects, i.e. effects suppressed
by inverse powers of V . It is straightforward to extract a physical hadron
massM from computations at fixed topology: one just has to fit Eq. (2.1) to
the available fixed topology and finite volume hadron masses MQ,V , where
M , M ′′ and χt are the fit parameters (examples of this procedure can be
found in [12–21]).

In Fig. 1, we show recent results for SU(2) Yang–Mills theory (stan-
dard plaquette action, gauge coupling β = 2.5, i.e. lattice spacing a ≈
0.073 fm [23]). The static potential Vqq̄,Q,V at separation r = 6a (which can
be interpreted as a mass) has been computed in different topological sec-
tors with topological charges |Q| = 0, 1, 2, 3, 4 and for different volumes
V̂ = 144, 154, 164, 184 (4000 gauge link configurations have been gener-
ated for each of the four volumes). Note that the discrepancies between
static potential results Vqq̄,Q,V (r = 6a) at different topological charges Q
are clearly visible, in particular for small volumes V 1. This demonstrates
the necessity of using specific methods to properly deal with topological fi-
nite volume effects. The curves represent a single fit of Eq. (2.1) to the
lattice static potential results Vqq̄,Q,V (r = 6a). The fit is of good qual-
ity, i.e. χ2 . 1. The resulting V̂qq̄(r = 6a) = 0.3097(5) is in excellent
agreement with a corresponding standard computation at unfixed topology,
which yields V̂qq̄(r = 6a) = 0.3101(3).

1 Similar observations for the pion mass have been reported in [24].
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Fig. 1. V̂qq̄,Q,V (r = 6a) as a function of 1/V̂ . The curves represent the fit of the
lattice static potential results for Eq. (2.1).

3. Ordinary finite volume effects

Usually, lattice simulations are performed at finite spatial volume L3 with
periodic boundary conditions. Consequently, a hadron at x will interact with
images of itself, e.g. at x±Lex, x±Ley or x±Lez. Such interactions cause a
shift in the hadron mass compared to infinite spatial volume, as first derived
in [25].

The corresponding equation to describe these ordinary finite volume cor-
rections (i.e. finite volume corrections not related to fixed topology) of the
static potential in Yang–Mills theory is

M(L)−M(L→∞) ∝ 1

L
exp

(
−
√
3mL

2

)
, (3.1)

where M ≡ Vqq̄(r) and m is the mass of the lightest particle, i.e. the JPC =
0++ glueball. In Fig. 2, we confront this equation with lattice SU(2) Yang–
Mills results for V̂qq̄(r = 3a) and find an excellent agreement (again, we
have used β = 2.5 and generated 4000 gauge link configurations for each
of the eight volumes V̂ = 104, 114, 124, 134, 144, 154, 164, 184). For L̂ ≥ 14,
ordinary finite volume effects are negligible. For smaller L̂, however, there
are sizeable corrections, which need to be taken into account, in particular
when using such volumes for computations at fixed topology as presented in
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the previous section. From the fit of Eq. (3.1) to the lattice results shown in
Fig. 2, one can even extract the JPC = 0++ glueball mass with remarkable
precision, m̂ = 0.74(4). This is in a perfect agreement with the result
obtained by a standard lattice computation of a glueball 2-point correlation
function, m̂ = 0.723(23) [26].
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Fig. 2. The dependence of V̂qq̄(r = 3a) on the periodic spatial extension L̂ of the
lattice (at unfixed topology).

4. Combining topological and ordinary finite volume effects

In the SU(2) example discussed in Section 2, it has been possible to
analyze fixed topology results using Eq. (2.1) in a meaningful way, i.e. with-
out taking ordinary finite volume effects into account. Since the mass of
the lightest particle, the JPC = 0++ glueball, is quite large, ordinary fi-
nite volume effects are strongly suppressed for large volumes. As indicated
by Fig. 2 and as done in Section 2, one just has to discard volumes with
L̂ < 14. In QCD, the situation is expected to be more difficult, because
there the lightest particle, the pion, is much lighter than the JPC = 0++

glueball of SU(2) Yang–Mills theory. Moreover, lattice simulations of QCD,
in particular at large volumes, are extremely demanding with respect to
high performance computer resources. Therefore, it is highly desirable to
combine Eqs. (2.1) and (3.1), i.e. to obtain an expression describing both
topological and ordinary finite volume corrections to hadron masses.

To derive such an expression, one has to consider ordinary finite volume
effects also at non-vanishing θ angles using equations analogous to (3.1).
These equations are the starting point for a lengthy calculation similar to
that leading to Eq. (2.1) (a detailed derivation of Eq. (2.1) can e.g. be found
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in [18]). The resulting expression describing both topological and ordinary
finite volume effects takes the form

MQ,V = M +
1

2χtV
M ′′

(
1− Q2

χtV

)
−A
L

(
1 +

1

2χtV

(
A′′

A
−
√
3m′′L

)(
1− Q2

χtV

))
× exp

(
−
√
3mL

2

)
+O

(
1

(χtV )2

)
, (4.1)

where ordinary finite volume effects for the topological susceptibility χt have
been neglected, since they are expected to be tiny [27, 28]. Note that in
addition to the parameters M , M ′′ and χt, which are already present in
Eq. (2.1), there are four more parameters, m, m′′, A and A′′, characterizing
combined topological and ordinary finite volume corrections.

In Fig. 3 (top), we show a plot similar to that from Fig. 1, this time for
V̂qq̄,Q,V (r = 3a). Moreover, also results for small volumes V̂ = 114, 124, 134

are included. The curves correspond to Eq. (2.1) with the fit parametersM ,
M ′′ and χt determined by a fit to the large volumes V̂ = 144, 154, 164, 184,
where ordinary finite volume effects are negligible. There is a strong dis-
crepancy between these curves and the lattice results for the small volumes
V̂ = 114, 124, 134. This is expected, since ordinary finite volume corrections
are not part of Eq. (2.1), in particular for small Q.

In Fig. 3 (bottom), we show the same lattice results for V̂qq̄,Q,V (r = 3a).
This time, however, the curves correspond to Eq. (4.1) with the fit pa-
rameters M , M ′′, χ̂t, m, m′′, A and A′′ determined by a fit to all seven
volumes V̂ = 114, 124, 134, 144, 154, 164, 184. There is almost perfect agree-
ment, even at small volumes and for Q = 0. The extracted “hadron mass”
V̂qq̄,Q,V (r = 3a) is consistent with a corresponding computation at unfixed
topology and also the glueball mass m̂, and the topological susceptibility χ̂t

obtained by the fit is in a fair agreement with reference values, cf. Table I.

TABLE I

Results for the static potential V̂qq̄(r = 3a), the mass m̂ of the JPC = 0++ glueball,
and the topological susceptibility χ̂t, obtained by a fit of Eq. (4.1) to fixed topology
lattice results V̂qq̄,Q,V (r = 3a).

V̂qq̄,Q,V (r = 3a) m̂ χ̂t × 105

Fit results, Eq. (4.1) 0.16437(15) 0.67(10) 9.5(2.0)

Unfixed topology results [26,29] 0.16455(7) 0.723(23) 7.0(0.9)
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Fig. 3. V̂qq̄,Q,V (r = 3a) as a function of 1/V̂ . Top: The curves represent the fit
of Eq. (2.1) to the lattice static potential results for large volumes V̂ = 144, 154,
164, 184. There is a strong discrepancy between these curves and the lattice results
for the small volumes V̂ = 114, 124, 134. Bottom: The curves represent the fit of
Eq. (4.1) to the lattice static potential results for all volumes V̂ = 114, . . . , 184.
There is almost a perfect agreement, even at small volumes and Q = 0.

To conclude, we have incorporated ordinary finite volume corrections into
an existing relation between hadron masses at fixed topology and physical
hadron masses (i.e. hadron masses at unfixed topology). We have success-
fully tested the resulting equation in SU(2) Yang–Mills theory by studying
the static potential at fixed topology. As an outlook, we plan to extend
these tests to QCD in the near future.
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