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Saturation of gluon distribution is a consequence of the non-linear evo-
lution equations of QCD. Saturation implies the existence of the so-called
saturation momentum which is defined as a gluon density per unit rapidity
per transverse area. At large energies, for certain kinematical domains,
saturation momentum is the only scale for physical processes. As a conse-
quence, different observables exhibit geometrical scaling (GS). We discuss
a number of examples of GS in different reactions.
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1. Introduction

At the eQCD meeting in 2013 [1], we have discussed the emergence
of geometrical scaling [2] for F5/Q? in deep inelastic scattering (DIS) [3]
and for charged particle distributions in proton collisions [4]. Here, after a
short reminder, we extend this analysis to (p) (Ne,) correlation [5,6] and
to heavy ion collisions (HI) |7]. References [1,3-7] include a more complete
bibliography of the subject.

Geometrical scaling hypothesis means that some observable ¢, which in
principle depends on two independent kinematical variables, say = and @2,
in fact depends only on a specific combination of them denoted as

o (2,Q%) = S.F(1). (1)
Here, function F' in Eq. (1) is a dimensionless function of scaling variable
T=Q%/Q:(x), (2)

* Presented at “Excited QCD 2015”, Tatranska Lomnica, Slovakia, March 8-14, 2015.
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and

Q3 (x) = Qf (/o) (3)
is the saturation scale. S, is a transverse area that corresponds to the
overlap of hadrons colliding at fixed impact parameter b (or integrated over
db), or — like in the case of DIS — it is a cross section for large dipole
scattering on a proton. Qo and xp in Eq. (3) are free parameters, which can
be extracted from the data within some specific model for o, and parameter
A is a dynamical quantity of the order of A ~ 0.3. Here, we shall test the
hypothesis whether different pieces of data can be described by formula (1)
with constant A, and what is the range of transverse momenta where GS
is working satisfactorily. Throughout this paper, we shall be neglecting the
logarithmic energy dependence due to the running of «.

2. Deep Inelastic Scattering at HERA

Let us start with DIS where the relevant scaling observable is F(z)/Q?
[2]. In Fig. 1, we plot Fy(z)/Q? as a function of Q? (left panel) and in terms
of 7 for A = 0.329 (right panel) for combined HERA data [8]. Different
points correspond to different Bjorken xs. We see from Fig. 1 that points of
different Bjorken zs scale very well with some exception in the right part of
Fig. 1 (b). These points, however, correspond to large Bjorken zs where GS
is supposed to break.
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Fig. 1. Combined DIS data [8] for F»/Q?. Different points forming a wide band as
a function of Q2 in the left panel correspond to different Bjorken zs. They fall on
a universal curve when plotted in terms of 7 (right panel). (Figure from the first
paper of Ref. [3].)
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3. Inelastic pr spectra at the LHC

In hadronic collisions at c.m. energy W = /s, particles are produced in
the scattering process of two patrons characterized by Bjorken zs

1‘172 = eiypT/W . (4)

For central rapidities, * = x1 ~ x2. Geometrical scaling in this case means
simply that [4]
dN

——s—| =S1F(1), (5)
dyd*pr |~

where F' is a universal dimensionless function of the scaling variable
7= pt/Qi(x) = pr/Qf (pr/(zaW))" . (6)

In Fig. 2, we plot ALICE pp data [9] in terms of p (left panel) and in
terms of scaling variable 7 (right panel) for A = 0.22. We have found by a
model independent analysis that the optimal exponent A = 0.22-0.24 [10],
which is smaller than in the case of DIS. Why this is so, remains to be
understood.
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Fig. 2. Data for pp scattering from ALICE [9] plotted in terms of pr and /7. Full
(black) circles correspond to W =7 TeV, down (red) triangles to 2.76 TeV and up
(blue) triangles to 0.9 TeV.

An immediate consequence of GS for the pr spectra is a power-like
growth of multiplicity with energy. Indeed, since

pr = Q (W) T/ (7)
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where the average saturation scale is defined as

QS(W) - QO (xOW/QO))\/(2+)\) ) (8)
one arrives at

aN _ ¢ o b /243 9T
=S x [y [Foren ] )

T

Data indeed support the power-like growth of inelastic multiplicity as s%!
as predicted by GS by Eq. (8) for A = 0.22-0.24.

4. Mean pt in hadronic collisions at the LHC
Another consequence of Eq. (5) is that [5]

(pr) ~ Qs(W), (10)

which means that (pr) rises with energy as W @+X) - which is, indeed,
seen in the data. On the other hand, since the saturation momentum is
by Eq. (8) equal to the gluon density per transverse area, one easily derive
the correlation between mean pt and charged particles multiplicity at given
energy W [5]
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Fig.3. Mean (pr) in pp collisions at 7 TeV (full black circles), 2.76 TeV
(full red down-triangles), 0.9 TeV (full blue up-triangles) and in pPb colli-
sions at 5.02 TeV (full brown diamonds) plotted in terms of scaling variable

(W/W)M PN /Ny /S1. For pp, Wo = 7 TeV and for pPh,s Wy = 5.02 TeV.
(Figure from the second paper of Ref. [5].)
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By fixing multiplicity, one is probing some fixed impact parameter that
corresponds to the overlap transverse area S| (Ng,) that itself is, by con-
struction, both multiplicity and energy dependent. Therefore, one needs a
model for S| (Ngp). To this end, we have used the Color Glass Condensate
result for pp and pA collisions [11]. The result is plotted in Fig. 3 where we
plot ALICE data [12]| as a function of scaling variable defined in Eq. (11).

5. Geometrical Scaling in heavy ion collisions

GS for particle spectra in HI collisions has been already discussed in
Ref. [7] and in Ref. [13] for photons. HI data are divided into centrality
classes that select events within certain range of impact parameter b. In this
case, both transverse area S| and the saturation scale Q2 acquire additional
dependence on centrality that is characterized by an average number of
participants Npare. We have [13,14]

2/3 1/3
S~ NS and QP ~ NMD. (12)
Therefore, in HI collisions
1 dN, 1
g = 5 F(r),  where 7= fi;f (pT) . (13)
evt Npart dndZPT QO part QO

In Fig. 4, we plot LHC and RHIC data in terms of pt (left panel) and /7
for A = 0.3 (right panel). One can see an approximate scaling of, however,
worse quality than in the pp case.
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Fig. 4. Hlustration of geometrical scaling in heavy ion collisions at different energies
and different centrality classes. Left panel shows charged particle distributions from
ALICE [15], STAR [16,17] and PHENIX [18,19] plotted as functions of pr. In the
right panel, the same distributions are scaled according to Eq. (13).
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To summarize: a wealth of data in hadronic collisions exhibit GS. This
may be interpreted as a signature of saturation. However some details, like
the non-universality of the value of A, remain to be understood.

This work was supported by the Polish National Science Centre grant
2014/13/B/ST2/02486.
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