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Dilepton production from the quark–gluon plasma (QGP) phase of
ultra-relativistic heavy-ion collisions is computed using the leading-order
(3+1)-dimensional anisotropic hydrodynamics. It is shown that high-energy
dilepton spectrum is sensitive to the initial local-rest-frame momentum-
space anisotropy of the QGP. Our findings suggest that it may be possi-
ble to constrain the early-time momentum-space anisotropy in relativistic
heavy-ion collisions using high-energy dilepton yields.
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1. Introduction

The enormous amount of data collected in ultra-relativistic heavy-ion col-
lision experiments at RHIC (Relativistic Heavy-Ion Collider) and the LHC
(Large Hadron Collider) have indicated that a new state of nuclear matter
called quark–gluon plasma (QGP) is created in these events. The data indi-
cated that the QGP behaves like an almost perfect fluid, which may be, to a
great extent, described within the framework of relativistic dissipative fluid
dynamics (see the recent review [1]). Recently, the study of the mechanisms
leading to, and the level of momentum-space isotropization/thermalization
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of partons comprising the QGP became an active research area [2, 3]. Un-
derstanding of these phenomena is crucial not only for setting up the initial
conditions for fluid dynamical frameworks, but also for judging applicabil-
ity of the fluid dynamical approaches to the early-time dynamics of high-
energy heavy-ion collisions. Various theoretical approaches have attempted
to explain the mechanisms driving the QGP towards the local equilibrium
state in both the strong and weak coupling limits, including gauge-gravity
(AdS/CFT) duality, perturbative quantum chromodynamics (pQCD), and
saturated initial-state color glass condensate (CGC) models [3]. These re-
sults suggest that during the early stages of the evolution, the matter pos-
sesses substantial local momentum-space anisotropies, with the transverse
pressure significantly exceeding the longitudinal pressure. In order to test
these findings, one would like to find experimental observables that are sensi-
tive to the early-time degree of momentum-space (an-)isotropy of the QGP.

High-energy (E > 2 GeV) electromagnetic probes, in particular dilep-
tons (produced from the decay of virtual fotons) and real photons, seem to
be perfect observables for this purpose, since they are produced mainly in
the early stages/central region of the collision and they are weakly coupled
to the QGP. This means that they leave the system almost undisturbed (for
recent reviews, see [4, 5]). In order to study the effects of local-rest-frame
(LRF) anisotropies in the system, the calculation of these observables has
to be convoluted with the fluid dynamical framework which treats these ef-
fects in a reliable manner. Along these lines, in this work, we review recent
results obtained by folding the dilepton production from the momentum-
space anisotropic QGP with the QGP background evolution obtained us-
ing the recently developed framework of (3+1)D leading-order spheroidal
anisotropic hydrodynamics [6–14]. As reported originally in Ref. [15], we
find that the high-energy spectrum of dileptons is quite sensitive to the
early-time momentum-space anisotropy of the QGP and, therefore, this ob-
servable may potentially be used to experimentally constrain the degree of
early-time momentum-space anisotropy.

2. Dilepton rate in an anisotropic plasma

At leading order in the electromagnetic coupling, O(α2), the dilepton
emission rate comes from quark–antiquark annihilation. The calculation
of the rate in an anisotropic QGP was performed using relativistic kinetic
theory in Refs. [16, 17]. Therein, it was shown that the production rate is
given by
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Above, it was assumed that the three-momenta of the quark and the lepton
pair are parametrized using spherical coordinates in the following way

p1 = p1 (sin θp1 cosφp1 , sin θp1 sinφp1 , cos θp1) ,

P = P (sin θP cosφP , sin θP sinφP , cos θP ) , (4)

where the z-axis is oriented along the direction of anisotropy n̂ (which is
taken to point along the beam line direction), and E and M are the energy
and the invariant mass of the lepton pair, respectively. The phase-space dis-
tribution functions of the quarks and antiquarks, which have to be specified
in (1) are assumed to be equal and, at leading order, given by the spheroidal
Romatschke–Strickland (RS) ansatz [18]

fq(q̄)(p, ξ, Λ) ≡ f iso
q(q̄)

(√
p2 + ξ(p · n̂)2, Λ

)
. (5)

In Eq. (5), the anisotropy parameter ξ describes the strength and type of
anisotropy. The physical situations suggested by microscopic models high-
lighted in Sec. 1 correspond to ξ ≥ 0 (oblate distribution), however, we
allow ξ to be anywhere in the range of −1 < ξ < ∞. The parame-
ter Λ is the transverse momentum scale, which coincides with tempera-
ture in the case of local isotropic equilibrium (ξ = 0). The isotropic dis-
tribution f iso

q(q̄) is assumed to be a Fermi–Dirac distribution. In general,
the transverse momentum scale and the anisotropy parameter may be ar-
bitrary functions of space-time point, which in the Milne parametrization
reads Xµ = (τ cosh ς,x⊥, τ sinh ς). Herein, we use the standard notation
for longitudinal proper time τ ≡

√
t2 − z2 and the space-time rapidity

ς ≡ tanh−1(z/t). In this study, the functions ξ(X) and Λ(X) are taken
from fluid dynamical simulations performed using the anisotropic hydrody-
namics framework, see Sec. 4.
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3. Dilepton spectra

With the dilepton emission rate in hand, the final invariant mass and
transverse momentum spectra may be obtained by performing the following
phase-space integrations
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respectively. The four-momentum of the dilepton pair is parametrized in
the following way

Pµ = (m⊥ cosh y, p⊥ cosφp, p⊥ sinφp,m⊥ sinh y) . (7)

Since we work in the Milne coordinates, the space-time measure is d4X =
τdτ dς d2x⊥. Before evaluating formulas (6a) and (6b), one has to remember
to transform the LAB momentum of the dilepton pair to LRF (where Eq. (1)
was obtained) using p′µ = Λµνpν . In this case, the general Lorentz boost
tensor depends on the four-velocity of the local rest frame Λµν (uρ(X)).

4. Hydrodynamic evolution

Although the system studied here is strongly anisotropic, it is assumed
that it behaves collectively, and may be effectively described using a finite
set of macroscopic degrees of freedom using a fluid dynamical framework.
For this purpose, we use the anisotropic hydrodynamics approach.

At leading order, the evolution equations of anisotropic hydrodynamics
may be derived by taking moments of the relativistic Boltzmann kinetic
equation in the relaxation time approximation and using the RS ansatz (5)
for the distribution function. In this way, the resulting energy-momentum
conservation equations ∂µTµν = 0 and particle production equation ∂µNµ =
uµ (Nµ

eq −Nµ) /τeq lead to five partial differential equations for five functions
of space-time, i.e., anisotropy parameter ξ, transverse momentum scale Λ,
and three independent components of four-velocity uµ. The relaxation time
is given through the relation τeq = 5η̄/(2T ), where η̄ = η/s, with η and s
being the shear viscosity and entropy density, respectively. The initial con-
dition for hydrodynamic evolution of Λ is specified on a constant proper
time surface using a mixed optical Glauber model. We also assume that the
initial flow in the transverse direction is vanishing, while in the longitudinal
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direction one initially has Bjorken flow, vz = z/t. For details of the hy-
drodynamical calculations and values of the parameters used, we refer the
reader to Sec. 4 of Ref. [15].

5. Results

The hydrodynamic model presented in previous section is used to simu-
late a (3+1)-dimensional minimum-bias lead–lead collision at the LHC beam
energy of 2.76 GeV. After the hydrodynamic evolution is determined, the
dilepton spectra are computed using formulas (6a) and (6b), assuming that
the emission stops when the temperature drops below a critical temperature
of 175 MeV. In the calculations, we restrict ourselves to the high-energy part
of the spectrum by setting the cuts to pmin

⊥ = 1 GeV and pmax
⊥ = 20 GeV for

transverse momentum integration, and Mmin = 1 GeV and Mmax = 20 GeV
for the invariant mass integration. In Fig. 1, we present exemplar results for
the invariant mass (left) and transverse momentum (right) spectra for vari-
ous values of the initial momentum-space anisotropy. One observes that the
transverse momentum spectra, in particular, is extremely sensitive to the ini-
tial anisotropy assumed. We observe that, with increasing initial anisotropy,
the spectra becomes flatter. We checked that the observed effects are larger
for η/s > 1/(4π).
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Fig. 1. (Color online) The minimum-bias invariant mass (left) and transverse mo-
mentum (right) spectra of dilepton pairs calculated within anisotropic hydrody-
namics for various values of the initial anisotropy ξ0 and the AdS/CFT lower bound
value of shear viscosity to entropy density ratio, η/s = 1/(4π).

6. Conclusions

Based on the model results obtained, we find that the invariant mass and
transverse momentum spectra are sensitive to the initial anisotropy of the
QGP. Our findings provide possibility to constrain the level of isotropisation
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of the strongly interacting medium created in relativistic heavy-ion collisions
by measuring the high-energy part of the dilepton spectra. It would be very
interesting to confront our findings with the experimental data including ad-
ditional dilepton emission from the hadronic phase. Moreover, it would be
interesting to go beyond the leading-order formulation of the anisotropic hy-
drodynamics by including NLO corrections [19,20], or to use more complete
leading-order formulations of anisotropic hydrodynamics [21,22].
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