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I review our current understanding of the phase diagram of two-color
quark matter with emphasis on the comparison of model and lattice results.
Reproducing, even qualitatively, the thermodynamic observables measured
on the lattice requires augmenting the standard Polyakov loop Nambu–
Jona-Lasinio model with two new elements: explicit chiral symmetry break-
ing in the contact interaction, and renormalization of the Polyakov loop.
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1. Two-color QCD

If quantum chromodynamics (QCD) at nonzero baryon density did not
suffer from the sign problem, there would be no need to write this text.
Meanwhile, our understanding of cold and dense nuclear matter remains
very rudimentary. Valuable insight could be gained by numerical simulation
of QCD-like theories which do not suffer from the sign problem. In this
contribution, I will concentrate on the most thoroughly studied one of them:
two-color QCD with quarks in the fundamental representation (2cQCD).
Eventually, I anticipate an effective model approach that applies to both
2cQCD and QCD and, therefore, allows one to translate the lattice results
for 2cQCD directly into the real world. Here, I will however focus only on
the first step of this ambitious program, that is, how to use already existing
lattice data to improve effective continuum models for 2cQCD itself.

The two-color world differs to a large extent from what we are used to.
Firstly, a color singlet can be only made out of an even number of quarks
and hence baryons are necessarily bosons. This can be traced back to the
fact that the quark representation of the SU(2) color group is pseudoreal.
The same fact also implies that 2cQCD with Nf flavors of massless quarks
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possesses an extended SU(2Nf ) flavor symmetry [1]. The low-energy spec-
trum of the theory is determined by the spontaneous breakdown of this sym-
metry by a chiral condensate in the ground state; the symmetry-breaking
pattern is SU(2Nf ) → Sp(2Nf ). For the Nf = 2 case, considered in the
following, this implies the existence of 5 Nambu–Goldstone (NG) bosons:
the usual pion triplet augmented with a diquark–antidiquark pair. When
the two quark flavors are endowed with equal, nonzero masses m0, the NG
modes will acquire a common nonzero mass as well, denoted here as mπ.

The presence of light bosonic states carrying baryon number dramati-
cally changes the topology of the phase diagram. At baryon chemical po-
tential µB = mπ (and zero temperature), the diquark mass drops to zero,
and at higher µB, we expect a Bose–Einstein condensate (BEC) to form.
At very high µB, on the other hand, the thermodynamics should be dom-
inated by a Fermi sea of weakly interacting quarks, slightly perturbed by
Bardeen–Cooper–Schrieffer (BCS) pairing. Since the spontaneous break-
down of baryon number by such pairing is characterized by the same order
parameter as diquark BEC, the transition between the two regimes is ex-
pected to be a smooth crossover [2]. At low baryon densities, the chiral
condensate σ and diquark condensate ∆ can be calculated using the model-
independent approach of effective field theory, giving a universal prediction
for these quantities normalized to the vacuum value of σ

σ

σ0
=

(
mπ

µB

)2

,
∆

σ0
=

√
1−

(
mπ

µB

)4

for µB ≥ mπ . (1)

2. Lattice results and the puzzle

The phase diagram of 2cQCD with two quark flavors has been calculated
using both the Nambu–Jona-Lasinio (NJL) model [3] and its Polyakov loop
extension [4], and more recently, also in lattice simulations with Wilson
fermions [5, 6]. While the results agree on the qualitative level, striking
discrepancies appear at a closer look. Firstly, at µB = 0, chiral symmetry
gets restored via a smooth but sharp crossover at a temperature Tc roughly
coinciding with the transition from hadronic to quark degrees of freedom
(deconfinement). Based on Eq. (1), one would naively expect the critical
temperature Td for diquark condensation at high µB to be of the same order.
However, its value is much smaller, roughly Td ≈ Tc/2 [6].

Secondly, the expectation value of the color-singlet diquark operator at
low (effectively zero) temperature and moderate chemical potential scales
as µ2

B, resembling the density of states at the Fermi surface of a system of
massless relativistic fermions. By the same token, the baryon density and
pressure are very close to their Stefan–Boltzmann (SB) limits in the same
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thermodynamic regime [5]. All these results suggest an early onset of a
BCS regime of weakly-coupled, nearly massless and gapless quarks. The
anticipated intermediate BEC phase, if present at all, is not resolved.

Such behavior is impossible to understand using any effective model
based on the global SU(4) flavor symmetry for a reason easy to understand.
Namely, symmetry requires via Eq. (1) that at zero temperature, σ2 +∆2 is
constant as a function of µB. (In effective models of the NJL type, the sum
tends to slightly increase with µB.) Hence, the quark constituent mass and
gap cannot be small simultaneously: at least one of them (or both) must
assume a value comparable with that in the vacuum.

3. Improved effective model

In order to be able to explain the above-sketched qualitative features of
the lattice results, I propose the following generalized NJL model

L = ψ̄
(
i /D −m0

)
ψ + κDµψ̄D

µψ +G
(
ψ̄ψ
)2

+λG
[(
ψ̄iγ5~τψ

)2
+
∣∣ψ̄Cγ5σ2τ2ψ

∣∣2] . (2)

The κ-term emulates the effects of explicit chiral symmetry breaking in the
lattice Wilson action. It leads to the appearance of a new species of heavy
fermions with mass scaling as 1/κ for κ → 0. In the following, I set κ = 0;
see Ref. [7] for an analysis of the consequences of this term.

The Lagrangian (2) contains all operators up to canonical dimension
five, consistent with the exact Sp(4) symmetry of 2cQCD with two massive
quark flavors. The contact four-fermion interaction was chosen in order
to allow a straightforward mean-field analysis of the model: the channels
corresponding to the NG modes and to the scalar mode that condenses in the
vacuum were included. Under the constraints of the full SU(4) symmetry,
all three channels would have to come with the same coupling strength.
However, explicit breaking of the chiral symmetry splits them, as expressed,
by including a new dimensionless coupling: the chiral twist λ. Note that
the pion and diquark channels are still degenerate, as required by the exact
Sp(4) symmetry of the theory.

Let us first inspect the vacuum physics of the model. For illustration of
the numerical results, the same parameter set as in Ref. [4] is used, namely

G = 7.23 GeV−2 , Λ = 657 MeV , m0 = 5.4 MeV . (3)

The parameter Λ represents a three-momentum cutoff. The chiral twist λ
is treated as a tunable coupling. The above values of the input parameters
are fixed among others to reproduce the pion mass in the vacuum, mπ =
140 MeV. Figure 1 shows how the pion mass and decay constant depend on
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the chiral twist. The pion mass initially sharply increases with decreasing λ;
in fact, in the strict chiral limit, its asymptotic behavior is mπ ∝

√
1− λ for

λ→ 1. For λ ≈ 0.6, the pion mass reaches the two-body quark continuum.
This defines the range of physically reasonable values of λ as λ ∈ [0.6, 1].
From the right panel of Fig. 1, one infers that simultaneously with becoming
very weakly bound, the pion ceases to behave as a NG boson at small λ: its
coupling to the axial current is strongly reduced. However, roughly in the
range λ ∈ [0.8, 1], fπ remains nearly constant, which avoids the necessity to
refit the model parameters anew for each value of λ considered.
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Fig. 1. Pion mass (left panel) and pion decay constant (right panel) in the vacuum
as a function of λ. The other parameters of the model are fixed according to Eq. (3).

As the next step, we investigate the effect of the chiral twist on the
flavor symmetry at zero temperature and nonzero density. The effective
field theory prediction (1) is in a very good agreement with the NJL model
at λ = 1. Reducing λ changes the picture dramatically, see Fig. 2. As one
could expect from the Lagrangian (2), the smaller λ is, the more suppressed
the diquark condensate becomes. In addition, however, the chiral condensate
is suppressed as well. As a consequence, a small enough value of λ can ensure
a fast transition to the regime with nearly massless and gapless quarks, as
observed on the lattice. The observation that Td ≈ Tc/2 together with
the fact that, in the BCS theory, the critical temperature for pairing is
proportional to the gap at zero temperature, leads to the simple estimate
0.6 . λ . 0.7. A similar estimate can be obtained by a direct calculation
of the baryon number density and pressure upon the requirement that these
saturate their respective SB limits immediately after the onset of diquark
condensation.

At nonzero temperature, the nature of thermal excitations becomes im-
portant. In order to reproduce the confining property of (2c)QCD, the NJL
model is coupled to the Polyakov loop, Φ. However, in contrast to usual
treatments in the literature, an additional step is made here to ensure a
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Fig. 2. The dependence of the rescaled chiral (left panel) and diquark (right panel)
condensate at zero temperature on µB/mπ for several values of λ: 1 (solid/red
line), 0.9 (dashed/green line), 0.8 (dotted/blue line) and 0.7 (dash-dotted/orange
line). Note that for the sake of comparison, the chemical potential is rescaled by
the λ-dependent pion mass.

meaningful comparison of the model predictions with lattice data: renormal-
ization of the Polyakov loop [5]. This temperature-dependent multiplicative
renormalization can be interpreted as a consequence of an additive renor-
malization of the free energy of a static test quark placed in the colored
medium. Requiring that at a given reference temperature T̄ , the renormal-
ized Polyakov loop takes a fixed value Φ̄R, the relation between the bare and
renormalized Polyakov loops Φ0 and ΦR reads

ΦR(T, µB) = Φ0(T, µB)

[
Φ̄R

Φ0(T̄ , 0)

]T̄ /T
. (4)

The definition of the PNJL model is completed by specifying the thermody-
namic potential of the gauge sector, which I take from Ref. [4],

Ωgauge(Φ) = −bT
[
24Φ2e−a/T + log

(
1− Φ2

)]
. (5)

The non-negative quantity Φ is forced to fall between 0 and 1 by the loga-
rithmic term in the potential. The comparison with lattice data is, therefore,
carried out by first solving the PNJL model for Φ, and then performing an
additional finite renormalization using Eq. (4).

Figure 3 shows the model predictions for the Polyakov loop at zero chemi-
cal potential; the parameters a, b were adjusted in order to reproduce the lat-
tice data correctly. In the same graph, I also plot the normalized chiral con-
densate, which demonstrates that the chiral and deconfinement crossovers
overlap for the parameter set used here. Note that thanks to the mean-field
approximation, these results for µB = 0 are independent of λ.
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Fig. 3. The expectation value of the rescaled chiral condensate (dashed line) and
the Polyakov loop (solid line) at µB = 0 as a function of temperature. The data
points are taken from Ref. [6].

4. Summary and outlook

The peculiar behavior of the thermodynamic observables in 2cQCD at
high baryon density and low temperature can be explained if one assumes
strong explicit breaking of chiral symmetry. This is incorporated here by
adding a new parameter to the NJL Lagrangian (2): the chiral twist λ. The
thus improved model can be used, in conjunction with the lattice data for
the Polyakov loop at nonzero chemical potential [5,6], to gain insight in the
back-reaction of the dense medium into the gauge sector [7].
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