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1. Introduction

Quantum chromodynamics (QCD) at low energies is dominated by the
non-perturbative phenomena of quark confinement and spontaneous chiral
symmetry breaking (χSB). Center vortices are promising candidates for ex-
plaining confinement. They form closed magnetic flux tubes, whose flux is
quantized, taking only values in the center of the gauge group. These prop-
erties are the key ingredients in the vortex model of confinement, which is
theoretically appealing and was also confirmed by a multitude of numerical
calculations, in the lattice Yang–Mills theory, see [1] and references therein,
and within infrared effective models of random center vortex lines in contin-
uous 3D space-time [2] and world-surfaces in discrete 4D lattices [3, 4].
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Lattice QCD simulations indicate further that vortices are responsible
for the spontaneous breaking of chiral symmetry (χSB), dynamical mass
generation and the axial UA(1) anomaly [5–16], and thus successfully explain
the non-perturbative phenomena which characterize the infrared sector of
strong interaction physics.

In these proceedings, we present recent results on so-called “double-wind-
ing” Wilson loops, a gauge-invariant observable suitable to test center vor-
tex and Abelian models of confinement by comparison with full the SU(2)
gauge theory. In view of the ongoing interest in monopole/caloron con-
finement mechanisms [17–21], it is reasonable to examine those conjectured
mechanisms critically.

2. Abelian fields and Abelian models

Magnetic monopole confinement mechanisms, in either the monopole
plasma [22,23] or (closely related) dual superconductor incarnations [24,25],
provide a durable image of the mechanism underlying quark confinement in
non-Abelian gauge theories. The more recent notion that long-range field
fluctuations in QCD are dominated by caloron gas ensembles [26, 27], fits
nicely into the framework of the earlier monopole plasma conjectures. The
mechanisms we are discussing have this point in common: there is some
choice of gauge in which the large scale quantum fluctuations responsible
for disordering Wilson loops are essentially Abelian, and are found primar-
ily in the gauge fields associated with the Cartan subalgebra of the gauge
group. For the SU(2) gauge group, which is sufficient for our purposes, let
this Abelian field be the A3

µ color component. The question we are con-
cerned with is: what do typical configurations drawn from the Abelian field
distribution look like? Do they resemble what is predicted by monopole
plasma, caloron gas, and dual superconductor models? To be clear, we do
not challenge the notion that, in some gauge, most of the confining fluc-
tuations are Abelian in character. The purpose is to subject a qualitative
feature of those predicted distributions to a numerical test.

3. Double-winding Wilson loops

Let C1 and C2 be two coplanar loops, with C1 lying entirely in the
minimal area of C2, which share a point ~x in common. Consider a Wilson
loop in SU(2) gauge theory which winds once around C1 and once, winding
with the same orientation, around C2. It will also be useful to consider
Wilson loop contours in which C1 lies mainly in a plane displaced in a
transverse direction from the plane of C2 by a distance δz comparable to
a correlation length in the gauge theory. We will refer to both of these
cases as “double-winding” Wilson loops. In both cases, we imagine that the
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extension of loops C1, C2 is much larger than a correlation length, so in the
latter example the displacement of loop C1 from the plane of C2 is small
compared to the size of the loops. Let A1, A2 be the minimal areas of loops
C1, C2 respectively. What predictions can be made about the expectation
value W (C) of a double-winding Wilson loop, as a function of areas Ai?

In the Abelian models summarized in the previous section, the answer
for the displaced loops simply W (C) = exp[−σ(A1 +A2)− µP ], where P is
a perimeter term, equal to the sum of the lengths of C1 and C2. Assuming
that the large scale fluctuations are Abelian in character, we can make the
“Abelian dominance” approximation
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If loops C1 and C2 are sufficiently far apart, then the expectation value of
the product is approximately the product of the expectation values, i.e.,
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which we refer to as a “sum-of-areas falloff”. Now, as δz → 0, we would argue
that this limit does not really change the sum-of-areas behavior. Analytical
arguments can be found in [28]. The question is whether this sum-of-areas
behavior corresponds to the actual behavior of double-winding Wilson loops.

In the center vortex picture of confinement, and also in the strong cou-
pling lattice gauge theory, the behavior of the double-winding loops, whether
coplanar or slightly shifted, is W (C) = α exp[−σ|A2 − A1|]. The same
difference-of-areas law is obtained in SU(3) pure gauge theory, in the vortex
picture and from strong-coupling expansions, for a Wilson loop which winds
twice around loop C1 and once around the coplanar loop C2. For simplicity,
however, we will restrict our discussion to SU(2), where W (C) picks up a
center element (−1) each time any of the loops C1 or C2 is pierced by a
vortex. So the vortex crossing can only produce an effect if it pierces the
minimal area of C2 but not the minimal area of C1, resulting in a “difference-
of-areas” falloff. A slight shift of loop C1 by δz in the transverse direction
does not make any difference to the argument, providing the scales of A1

and A2 are so large compared to δz that a vortex piercing the smaller area
A1 is guaranteed to also pierce the larger area A2.
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4. Sum or difference of areas?

We consider the contour shown in Fig. 1 (a), where δL = 1, L = 7, L2 and
therefore the size of C2 are fixed and we vary L1, i.e., the size of the inner
loop C1. If we increase L1, the sum-of-areas (and the perimeter) increases,
however difference-of-areas decreases. Thus, if W (C1 × C2) increases with
L1, the dominant behavior must be difference-of-areas, and sum-of-areas is
completely ruled out. This is clearly the case for center-projected loops in
maximal center gauge (Fig. 1 (b)) and, more importantly, for gauge-invariant
loops as shown in Fig. 1 (d). The difference-of-areas law is not evident for
Abelian-projected loops in maximal Abelian gauge (Fig. 1 (c)). In Fig. 2 (a),
we plot results for fixed perimeter P , vs. the difference in area A2 − A1 of
the contour shown in Fig. 1 (a) with δL = 0. Note that the points seem to
cluster around universal lines, regardless of perimeter. The results clearly
show that difference-of-areas is the dominant effect, and the sum-of-areas
behavior is definitely ruled out.
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Fig. 1. (a) The coplanar double-winding loop 164 lattices with L = 7, L2 fixed and
δL = 1. Both unprojected SU(2) loops on smeared links (b), and center-projected
loops in maximal center gauge (d) show a difference-of-areas, MAG projected loops
(c) show sum-of-areas behavior.
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We also look at shifted double-winding loops with C1 = C2 = C, so that
the difference in areas is zero. For a transverse shift δz = 0, the situation
is trivial. We can make use of an SU(2) group identity Tr[U(C)U(C)] =
−1+TrA U(C), where the trace on the right-hand side is in the adjoint rep-
resentation. Since, apart from very small loops, 〈TrA U(C)〉 � 1, we have,
almost independent of loop size, W (C) ≈ −1

2 , which is obviously consistent
with difference-in-area behavior, just like for center-projected loops, where
the result isW (C) = 1 exactly. For loops C1 = C2 shifted by δz = 1a, where
a is the lattice spacing, there is still almost no effect for center projected
loops, and for smeared SU(2) loops W (C) levels off for large areas A, see
Fig. 2 (b). Abelian-projected loops seem to follow a sum-of-areas falloff in
this range, although they may level out eventually.
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Fig. 2. Double-winding loops (a) for the contours of Fig. 1 (a) with δL = 0 for fixed
perimeter P , smeared SU(2) and center projected (MCG) results; (b) for C1 = C2

(difference in area is zero) shifted in a transverse direction by one lattice spacing.
W (C) for the unprojected SU(2) loops levels off at A1 = A2 ≈ 8.

5. Conclusions

We draw the obvious conclusion that if confinement can be attributed,
in some gauge, to the quantum fluctuations of gauge fields in the Cartan
subalgebra of the gauge group, then the spatial distribution of the corre-
sponding Abelian field strength cannot follow any of the models discussed
in Section 2. The difference-of-areas law could be obtained in these models
once the neglected double charged matter, namely W -bosons (or any other
double-charged objects in the model), are properly taken into account. But
then, the typical distribution of Abelian fields in the vacuum must be ar-
ranged so as to be consistent with the difference-of-areas behavior. For
example, in a monopole picture, the field distribution at a fixed time would
very likely resemble a chain of monopoles and anti-monopoles rather than a
monopole Coulomb gas, with the magnetic flux collimated, from monopole
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to anti-monopole, along the line of the chain. In other words, rather than
being a monopole plasma, this is a vacuum consisting of center vortices, and
the difference-in-area law follows. This is exactly what happens in compact
QED with a double-charged Higgs and numerical evidence for this picture
was also provided in the context of Abelian projection in maximal Abelian
gauge [29, 30]. In general, vortices have a non-trivial color structure, which
in Abelian projection leads to monopole lines on vortex surfaces and is a key
ingredient for chiral symmetry breaking of center vortices [14,15].
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