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A collective nuclear model of two-dimensional (2D) axial quadrupole–
octupole (QO) vibrations coupled to rotations, originally restricted to co-
herent vibration modes allowing exact separation of variables and analytic
solution of the eigenvalue problem, is developed beyond this restriction.
The complete 2D problem is solved by diagonalizing the unrestricted QO
Hamiltonian in the basis of the analytic solution. The test calculation for
152Sm showed that in this way the model description of yrast alternating-
parity levels and the attendant B(E1)–B(E3) transition probabilities is
considerably improved compared to the coherent-mode case. At the same
time, the shape of the QO potential is unambiguously determined provid-
ing model estimates for the quadrupole and octupole deformations of the
nucleus.
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1. Introduction

The manifestation of complex shape effects in atomic nuclei is indicated
by the specific structure of observed energy spectra and the attendant elec-
tromagnetic transitions. In particular, the appearance of alternating-parity
bands (APBs) in even–even nuclei and quasi parity-doublet (QPD) sequences
in odd mass nuclei is considered as the result of the presence of quadrupole–
octupole (QO) deformations [1]. Usually, these spectra are attended by
enhanced electric E1 and E3 transitions between levels with the opposite
∗ Presented at the XXII Nuclear Physics Workshop “Marie and Pierre Curie”, Kazimierz
Dolny, Poland, September 22–27, 2015.

(619)



620 N. Minkov, M. Strecker, H. Lenske

parity. The leading collective mode associated with these shapes is the QO
vibration on top of which rotation modes are built. In actinide nuclei, such
as U and Pu and some rare-earth isotopes like Nd, Sm, Gd and Dy, the
APBs do not form single octupole bands but rather indicate the presence
of a soft QO mode in the collective motion. In many odd-mass nuclei, the
coupling of the odd nucleon to the QO deformed core leads to the appear-
ance of a QPD structure of the spectrum which can be also associated with
soft-shape QO oscillations of the even–even core.

A collective model for nuclei with soft QO degrees of freedom was pro-
posed in [2]. It is assumed that the shape of the system simultaneously
oscillates in a 2D potential with respect to axial quadrupole and octupole de-
formation variables. The potential possesses an infinite angular momentum-
dependent core at the zero-deformation point. The consideration of such a
collective mode is expected to provide rich and interesting dynamical prop-
erties of the nuclear vibration–rotation motion. However, though looking
relatively simple, the general 2D treatment of the eigenvalue problem ap-
pears to be far not trivial. In [2], it was shown that if certain relations
between the quadrupole and octupole mass, stiffness and inertia parameters
are imposed, the 2D problem can be reduced to a one-dimensional one for
which a simple analytic solution can be obtained. The specifically assumed
relations correspond to the imposition of a common, coherent oscillation fre-
quency for the quadrupole and octupole vibration modes. It appeared that
the analytic model formalism based on this coherent quadrupole–octupole
mode (CQOM) quite reasonably describes the structure of yrast and non-
yrast APBs and QPDs and the attendant B(E1)–B(E3) transition probabil-
ities in wide ranges of even–even and odd-mass nuclei [2–5]. Nevertheless,
the imposed coherent constraints lead to certain limitations in the geomet-
ric interpretation of the physical pattern, such as the consequent ellipsoidal
bottom of the QO deformation potential as well as some restrictions on the
model descriptions due to the imposed purity of the coherent QO modes.
To overcome these limitations, one has to solve the complete unrestricted
2D problem for the coupled QO vibrations and rotations. The aim of the
present work is to show how this can be done by using the analytic solution
from the constrained CQOM approach as a basis. It will be seen that the
diagonalization of the unconstrained QO Hamiltonian in this basis provides
a suitable way to solve the complete 2D problem. The solution avoids the
singularity at the zero-deformation point and, in addition, benefits from the
analytic form of the matrix elements obtained in ellipsoidal coordinates.

In Sec. 2, the QO model formalism and its CQOM limit are briefly pre-
sented. In Sec. 3, we explain the diagonalization procedure for the uncon-
strained Hamiltonian. In Sec. 4, a test result for the yrast APB of 152Sm is
given and discussed. In Sec. 5, we briefly conclude.
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2. Model of axial quadrupole–octupole vibrations and rotations

The QO model Hamiltonian HQO = TQO + UQO is given by [2, 3]
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where β2 and β3 are axial quadrupole and octupole variables, respectively,
B2 (B3), C2 (C3) and d2 (d3) are quadrupole (octupole) mass, stiffness and
inertia parameters, respectively and
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For even–even nuclei, one has X(I,K) = X(I,K = 0). The parameter d0

determines the potential shape at I = 0 and π is the total parity of the
state. In odd-mass nuclei, the Coriolis decoupling factor a is considered for
an odd-nucleon state with K = 1/2. In the original work [3], this factor was
taken as a model parameter and was adjusted to the experimental data. In
later works [6,7], it was calculated by using a reflection-asymmetric deformed
shell model within a parity-projection particle-core coupling scheme.

The shapes of the potential UQO are schematically illustrated in Figs. 1
and 2 in Ref. [2] where in Fig. 2, it is shown that under the constraint
C2/d2 = C3/d3 the potential possesses an ellipsoidal bottom. This im-
plies the convenience of introducing ellipsoidal coordinates such that β2 =
pη cosφ, β3 = qη sinφ, with p =

√
d/d2, q =

√
d/d3 and d = (d2 + d3)/2.

Then, the Hamiltonian appears in the form
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Further, under the assumption of coherent QO oscillations with a fre-
quency ω =

√
C2/B2 =

√
C3/B3 ≡

√
C/B, the collective energy of the

system is obtained in the form [2,3]
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Enk(I,K) = ~ω
[
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√
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]
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(5)
where b = 2B/(~2d). The QO vibration wave function is

Φ±nkI(η, φ) = ψInk(η)ϕ
±
k (φ) , (6)

where the “radial” part ψInk(η) involves generalized Laguerre polynomials in
the variable η [2]. The “angular” part in the variable φ is obtained under
the boundary condition ϕ(−π/2) = ϕ(π/2) = 0 which effectively reduces
the solution to the case of β2 > 0 and provides a positive or negative parity,
πϕ = ±, of the wave function as follows:

ϕ+
k (φ) =

√
2/π cos(kφ) , k = 1, 3, 5, . . . (πϕ = +) , (7)

ϕ−k (φ) =
√

2/π sin(kφ) , k = 2, 4, 6, . . . (πϕ = −) . (8)

The wave function for a state with angular momentum Iπ belonging to
an alternating-parity sequence in even–even nuclei has the form [2]
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where DI
M0(θ) is the Wigner function. In odd–even nuclei the total core+

particle wave function for a state with angular momentum Iπ belonging to
a parity-doublet sequence is given by [3]
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where FK and πsp are the wave function and the parity of the single-particle
state, respectively.

The energy spectrum of CQOM is determined in (5) by the quantum
numbers n and k. In even–even nuclei, the APB is formed under the con-
dition π(−1)I = 1. Each band is characterized by a given n and a pair of
odd and even k-values, k(+)

n and k
(−)
n with k

(+)
n < k

(−)
n , corresponding to

the positive- and negative-parity sequences, respectively. In odd-mass nu-
clei, the parity-doublet structure is imposed by the condition π = πϕ πsp.
Similarly to the even–even nuclei, the parity doublet is determined by a
given n and a pair of odd and even k-values, k(+)
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Iπ=−π(n)
sp , where π(n)

sp is the parity of the ‘sp’ state on which the given QPD
is built.
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By using the CQOM formalism, the yrast and non-yrast APBs and QPBs
and the attendant B(E1), B(E2) and B(E3) transition probabilities in var-
ious even–even and odd-mass nuclei were described [4, 5].

3. Diagonalization of the unconstrained QO Hamiltonian

The eigenvalue problem for Hamiltonian (1) with arbitrary values of the
mass, stiffness and inertia parameters cannot be solved analytically and one
has to search for a numerical solution. The standard way is to diagonal-
ize the Hamiltonian in an appropriate basis. The obvious and most direct
approach is to diagonalize (1) in the basis of a two-dimensional harmonic
oscillator in the variables β2 and β3. We have examined this possibility and
found that essential difficulties come from the need to calculate the matrix
elements numerically and even more, from the singularities in the numer-
ical integrations in the zero deformation point (β2 = β3 = 0). Then, we
examined the possibility to diagonalize for given angular momentum I the
Hamiltonian taken in ellipsoidal variables (3) and (4) in the basis of the an-
alytic solution (6) obtained in the coherent mode assumption. In this case,
the Hamiltonian matrix elements have the form

〈
n′ k′ |H|nk

〉
=

d√
d2d3

π
2∫

−π
2

∞∫
0

ψIn′k′(η)ϕk′(φ)HQO(η, φ)ψ
I
nk(η)ϕk(φ)ηdηdφ ,

(11)
where |nk〉 ≡ Φ±nkI(η, φ). By using the Mathematica program, we were
able to obtain a lengthy, but well determined expression for the kinetic
matrix element 〈n′ k′|TQO|nk〉 in terms of products of matrix elements of
powers of η, sinφ and cosφ. Much simpler expression for the potential
matrix element 〈n′ k′|UQO|nk〉 directly comes from Eq. (4). Then, we get
the matrix element (11) in a general form containing angular integrals of
products of powers of sinφ and cosφ and integrals of the powers of η. The
former are simplified and calculated with Mathematica, while the latter are
easily calculated by using a known analytic expression for integrals involving
two Laguerre polynomials [8]

∞∫
0

tα−1e−ptLλm(pt)L
β
n(pt)dt =

p−αΓ (α)Γ (n− α+ β + 1)Γ (m+ λ+ 1)

m!n!Γ (1− α+ β)Γ (λ+ 1)

×3F2(−m,α, α− β;−n+ α− β, λ+ 1; 1) , (12)

where 3F2 denotes a generalized hypergeometric function. The function 3F2

is easily calculated through summation of its series representation. The use
of the CQOM analytic basis has the following advantages:
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(i) Easily calculated analytic matrix elements;
(ii) Built-in boundary condition and parity properties of the wave func-

tions (see the text below Eq. (6));
(iii) Avoiding the singularity at the zero deformation point. This feature

of the basis wave functions is illustrated in Fig. 1 (right) showing how
the density maxima surround the potential core at zero deformation in
contrast to the 2D oscillator states, Fig. 1 (left). See also Fig. 3 in [2].

Fig. 1. (Color on-line) Schematic density plots for the 2D harmonic oscillator func-
tion (left) and the CQOM wave function (right) for β2 ≥ 0 and −1 ≤ β3 ≤ 1. The
indices i, j and n, k denote numbers of oscillator quanta.

To get the spectrum, the Hamiltonian is diagonalized for each angular
momentum I in a basis set of CQOM functions limited to large enough
n and k oscillator-number values ensuring reliable eigenvalues and eigen-
functions at physically interesting (low) energies. The parameters of the
basis are determined by taking into account the arithmetic average of the
quadrupole and octupole mass and inertia parameters and, in addition, are
optimized. The yrast APB or QPD band is determined by taking for each
angular momentum I the lowest eigenvalue whose eigenfunction has the rel-
evant parity. Each wave function is obtained in the form of an expansion

Ψ̃πI (η, φ) =
∑
n,k

CnkIΨ
π
nkI(η, φ) , (13)

where the coefficients CnkI are determined. Hence, the matrix elements
of the electric transition operators are obtained in the form of sums over
n and k of CQOM matrix elements. Thus, all reduced transition probabil-
ities are calculated by using the formalism elaborated in the CQOM ap-
proach [4].
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4. Numerical result and discussion

Here, we illustrate the above approach in the yrast APB of the nucleus
152Sm for which CQOM descriptions were obtained in [2] and [4] (including
non-yrast APBs). The parameters of the full unconstrained QO Hamilto-
nian (mass, stiffness and inertia parameters) were adjusted in order to repro-
duce the experimental levels and B(E1)–B(E3) transition probabilities. The
obtained parameters values are B2 = 109.0~2/MeV, B3 = 100.08~2/MeV,
C2 = 16.79 MeV, C3 = 339.8 MeV, d2 = 120.7~2/MeV, d3 = 4744~2/MeV,
d0 = 81.40~2 and effective charge e1

eff = 2.85e (see [4] for explanation). In
Table I, the APB levels obtained in the present 2D QO model (2DQOM)
are compared with those obtained in CQOM [2] and with the experimen-
tal levels [9]. The theoretical and experimental transition probabilities are
compared in Table II. We see that the fits of the unconstrained Hamiltonian
parameters essentially improve the APB description compared to CQOM,
quality being measured by the standard root mean square (r.m.s.) value.
Also the good description of transition rates is seen.

TABLE I

Theoretical 2DQOM and CQOM yrast APB levels (in keV) of 152Sm compared to
experimental data [9].

Iπ CQOM 2DQOM Exp.

r.m.s. = 49 keV r.m.s. = 33 keV
1− 853.73 889.20 963.354
2+ 112.23 109.00 121.782
3− 994.59 1023.22 1041.114
4+ 357.52 350.25 366.479
5− 1235.09 1252.12 1221.48
6+ 706.33 699.17 706.88
7− 1557.94 1559.44 1505.61
8+ 1129.65 1129.51 1125.35
9− 1945.59 1928.33 1879.11
10+ 1604.99 1618.84 1609.23
11− 2382.93 2344.09 2326.96
12+ 2116.62 2149.75 2148.51
13− 2857.99 2794.89 2833.25
14+ 2653.93 2708.84 2736.01
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TABLE II

Theoretical (2DQOM) and experimental [10, 11] reduced transition probabilities
for 152Sm.

Mult. Transition 2DQOM [W.u.] Exp. [W.u.]

E2 2+ → 0+ 139 144(3)
E2 4+ → 2+ 209 209(3)
E2 6+ → 4+ 251 245(5)
E2 8+ → 6+ 286 285(14)
E2 10+ → 8+ 316 320(3)
E1 1− → 0+ 0.0041 0.0042(4)
E1 1− → 2+ 0.0085 0.0077(7)
E2 3− → 2+ 0.0063 0.0081(16)
E2 3− → 4+ 0.0089 0.0082(16)
E3 3− → 0+ 8.87 14(2)

In Fig. 2, the QO potential shapes corresponding to the model parame-
ters for 152Sm are plotted. The left plot represents the full potential shape,
whereas the right one illustrates the corresponding effective potential for
β2 > 0 with the built-in infinite wall at β2 = 0. We see that now the full
2DQOM solution suggests a QO potential the bottom of which is not ellip-
soidal but possesses single quadrupole and octupole minima. The right plot
visualizes the effective oscillation of the nuclear shape between the positive
and negative β3 minima with a motion around the zero-deformation core
and simultaneous tunneling through a 2D potential barrier. At the same
time, the obtained (test) potential shape provides model estimates for the
quadrupole deformation β2 ∼ 0.37 (somehow overestimated) and for the
octupole deformation β3 ∼ 0.09 (quite reasonable) in 152Sm.

Fig. 2. (Color on-line) 2DQOM model shapes for the full (left) and the effective
(β2 > 0) (right) QO potential obtained for 152Sm.
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5. Conclusion

We found that the analytic CQOM wave functions are suitable to diago-
nalize the unconstrained QO Hamiltonian in the solution of the full 2D prob-
lem for axial QO vibrations and rotations of nuclei. The test calculation for
152Sm shows that the fits of the unconstrained parameters considerably im-
prove the model description of the yrast APB with the attendant transition
probabilities. Also, in this way, the potential shape is unambiguously deter-
mined providing model estimates for the possible QO deformation modes.
This result encourages the application of the full 2DQOM approach to other
nuclei as well as the consideration of non-yrast APB and QPD spectra.

This work has been supported by the Bulgarian National Science Fund
under contract No. DFNI-E02/6.
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