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Recent applications of the semi-realistic nucleonic interaction to the
nuclear mean fields are presented: (i) prediction of magic numbers in the
whole nuclear chart and (ii) isotope shifts of the Z = magic nuclei with the
density-dependent LS interaction. In (i), it is found that the known magic
numbers are well reproduced with only a few exceptions, from light to heavy
stable and unstable nuclei, with the M3Y-P6 interaction. A part of this
success is attributed to the realistic tensor force included in the interaction.
In (ii), the kink of the Pb nuclei and the vanishing isotope shift of 48Ca rel-
ative to 40Ca, both of which have supplied long-standing problems, can be
described fairly well, if we take into account the density-dependence in the
LS channel indicated by the chiral effective field theory. These results illus-
trate that a proper combination of microscopic theories and phenomenology
on effective interactions can advance nuclear structure physics.

DOI:10.5506/APhysPolBSupp.8.629
PACS numbers: 21.60.Jz, 21.30.Fe, 21.10.Pc, 21.10.Ft

1. Introduction

As being able to describe basic properties of nuclei such as the saturation
and the shell structure, importance of the mean-field (MF) or the energy den-
sity functional (EDF) approaches in nuclear structure theories cannot be ex-
aggerated. However, origin of the spin-orbit (`s) splitting, which is essential
to the nuclear shell structure, has not been understood well [1]. Moreover,
experiments using the radioactive beams disclosed that the shell structure
significantly depends on the proton (Z) and neutron (N) numbers [2], and
this Z- and N -dependence was not well predicted by the conventional MF
approaches. This suggests that the effective nucleonic interaction (or EDF)
should be reconsidered.
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I have developed a series of semi-realistic nucleonic interactions [3, 4],
which have a root on the bare nucleonic interaction but contain phenomeno-
logical modifications, and have used them in the calculations in the MF [5,6]
and the random-phase approximations [7, 8]. The semi-realistic interaction
used in this study is based on the Michigan three-range Yukawa (M3Y) inter-
action which was derived from the Paris two-nucleon (2N) interaction via
the G-matrix [9]. To obtain the saturation properties, density-dependent
contact terms are added to the central channels, and some of the strength
parameters are modified accordingly. Since it is difficult to account for the
observed size of the `s splitting, the LS channel of the M3Y interaction has
been modified in a phenomenological manner [3], or in a manner inspired
by results of the chiral effective field theory (χEFT) [10]. In this paper, I
shall show recent results on the shell structure of the MF calculations with
the M3Y-type semi-realistic interaction: prediction of the magic numbers in
Sec. 3 and investigation on the isotope shifts of the Z= magic nuclei in Sec. 4.

2. Mean-field approaches with semi-realistic interaction

The full Hamiltonians for the MF calculations is given by H = HN +
VC−Hcm, with the Coulomb interaction VC, the center-of-mass Hamiltonian
Hcm = P 2/2AM and the nuclear part HN =

∑
i p

2
i /2M +

∑
i<j v̂ij . The

following form is taken for effective nucleonic interaction v̂ij :
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ij = 2iD[ρ(Rij)]pij × δ(rij)pij · (si + sj) . (1)

Here Lij = rij×pij , Sij = 3(si · r̂ij)(sj · r̂ij)−si ·sj , and fn(r) = e−µnr/µnr.
PY represents the projection operator on the channel Y, where Y is a singlet-
even (SE), a triplet-even (TE), a singlet-odd (SO) or a triplet-odd (TO) 2N

channel. For v̂(Cρ)ij , we take C(Y)[ρ] = t
(Y)
ρ ρα

(Y) (Y = SE or TE, α(SE) = 1,

α(TE) = 1/3). For D[ρ] in v̂(LSρ)ij that is used in Sec. 4, we adopt the form
D[ρ(r)] = −w1 ρ(r)/[1 + d1ρ(r)]. To the MF calculations, the numerical
algorithm based on the Gaussian expansion method [11–13] is applied.
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Some of the parameters in the central channels have been fitted to the
experimental data of the binding energies and the matter radii of doubly
magic nuclei from 16O to 208Pb [4], whereas v̂(TN)

ij and the longest-range part

of v̂(C)
ij (that comes from the one-pion exchange and is denoted by v̂(C)

OPEP)
are realistic, being unchanged from the M3Y-Paris interaction. Results with
the parameter-set M3Y-P6 and its variant will be shown in this paper. In
M3Y-P6, v̂(LS)ij is enhanced by an overall factor 2.2, to reproduce the single-
particle (s.p.) level sequence at 208Pb [4].

It has been pointed out that the tensor channels in the 2N interaction
play important roles in the Z- or N -dependence of the shell structure [14].
Since the semi-realistic interactions contain the realistic tensor force, it will
be interesting to check how well it describes the Z- or N -dependence of the
shell structure. Although the s.p. energies obtained by the MF calculations
do not correspond to the observed levels, which are affected by the coupling
to e.g. the vibrational degrees of freedom, the energies calculated in the MF
regime can be compared with the energies averaged by the spectroscopic
factors. A good example is found in the p0d−1

3/2 and p1s−1
1/2 states of 40Ca

and 48Ca, for which the sum of the observed spectroscopic factors is close to
unity [15,16]. Moreover, these two states are inverted from 40Ca to 48Ca. In
Fig. 1, the s.p. energy difference between p0d3/2 and p1s1/2 in the spherical
Hartree–Fock (HF) calculations is compared with the data averaged by the
spectroscopic factors. As well as the inversion from 40Ca to 48Ca, the slope of
the s.p. energy difference is well reproduced by the semi-realistic interaction
M3Y-P6. It is also found that this slope is hard to be reproduced with e.g.
the Gogny interaction D1M, which do not have the tensor channels. Effects
of v̂(TN)

ij on the slope are argued in detail in Ref. [17].
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Fig. 1. (Color on-line) ∆εp = εp(1s1/2) − εp(0d3/2) in Ca. Solid (red) and dashed
(green) line is obtained by the HF calculation with M3Y-P6 and D1M, respectively.
Experimental data for 40Ca and 48Ca are shown by crosses, obtained from the
spectroscopic factors given in Refs. [15, 16].
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3. Magic numbers
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Fig. 2. (Color on-line) Chart showing magic numbers predicted with the M3Y-P6
interaction. Individual boxes correspond to even–even nuclei. Magic (submagic)
Zs are represented by the red-colored (orange- or yellow-colored) frame, and magic
(submagic) Ns by filling the box with the blue (skyblue or green) color. The
λsub values for the submagic numbers (in MeV) are as parenthesized. Quote from
Ref. [6].
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Magic proton (neutron) numbers may appear at Z (N) which gives cer-
tain shell closure in the spherical HF regime. However, this magicity can be
broken due to the pair correlation or the deformation, if the shell gap is not
sufficiently large. We here take the pair correlation as a measure of the shell
gap. Magic Z (N) is assigned if the proton (neutron) pair energy vanishes in
the spherical Hartree–Fock–Bogolyubov (HFB) calculations. As submagic
numbers are sometimes argued, they are here identified if the energy gain in
HFB relative to HF is smaller than a certain value λsub. It has been found [6]
that magic and submagic numbers obtained from the M3Y-P6 interaction
are compatible with most of the available experimental data, as depicted in
Fig. 2. For λsub, 0.5 and 0.8 MeV are adopted. Although the loss of N = 20
magicity at 32Mg [18] and of Z = 40 in N ≥ 60 [19] is not well reproduced
in Fig. 2, the axial HF calculation indicates that there is a prolate minimum
with close energy to the spherical one at 32Mg [20], and that the absolute
minimum is at the prolate in 60–66Zr [21]. Influence of v̂(TN)

ij and v̂(C)
OPEP on

the magic numbers has been reported in Ref. [6].

4. Isotope shifts — evidence of 3N LS interaction

Isotope shifts of the Z = magic nuclei, which are expected to be well
described in the spherical MF regime, have provided nuclear structure the-
ories with serious problems. One of them is the kink of the isotope shifts
at N = 126 in Pb, which has been hard to be reproduced without fictitious
s.p. level degeneracy or inversion [22,23].

Recent χEFT analysis [24] suggests that the strength of the LS chan-
nel becomes stronger as the density increases, if the density-dependent 2N
interaction deduced from the three-nucleon (3N) interaction is taken into
account. This effect may account for the missing fraction of the `s splitting.
Instead of enhancing v̂(LS)ij of the M3Y-Paris interaction, in Ref. [10] v̂(LSρ)ij

is added so as not to change the n0i splitting at 208Pb. The new parameter-
set, in which all the parameters are identical to those of M3Y-P6 except the
LS channels, is named M3Y-P6a.

4.1. Pb isotopes

The χEFT-inspired density-dependent LS interaction may be relevant to
the kink problem of the isotope shifts of the Pb nuclei [10].

The isotope shifts of the Pb nuclei are usually defined by adopting 208Pb
as a reference, ∆〈r2〉p(APb) = 〈r2〉p(APb)− 〈r2〉p(208Pb). It has been clari-
fied [22, 25] that the kink at N = 126 occurs because of the partial occupa-
tion of n0i11/2 via the pairing. However, in the studies so far, the kink was
reproduced fairly well only by models in which n1g9/2 and n0i11/2 are al-
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most degenerate or even inverted, although n1g9/2 is the lowest orbit above
N = 126 as confirmed by the energy levels of 209Pb [26]. The channel v̂(LSρ)ij

tends to extend the s.p. function of the j = `−1/2 orbits, e.g. that of n0i11/2,
while tends to shrink those of j = ` + 1/2. Owing to this mechanism, the
HFB calculations with M3Y-P6a, in which v̂(LSρ)ij is properly combined with
the semi-realistic interaction, describe the kink fairly well as shown in Fig. 3,
simultaneously giving appropriate s.p. energy difference between n1g9/2 and
n0i11/2 [10].

 !"#

 #"$

 #"%

 #"&

 #"'

#"#

#"'

#"&

#"%

D
(
)'
*
+
,-
./

'
0

!1#!'2!'#!!2!!#

3

Fig. 3. (Color on-line) Isotope shifts of the Pb nuclei ∆〈r2〉p(APb), obtained from
the HFB calculations with M3Y-P6a (solid red line), in comparison to those with
M3Y-P6 (dashed green line). Thin brown dot-dashed line in N ≥ 126 is the HF
result in which all the valence neutrons occupy n1g9/2. Dotted (red) line shows
∆〈r2〉p(APb) with M3Y-P6a in the hypothetical limit that n1g9/2 and n0i11/2 were
equally occupied. Experimental data are taken from Refs. [27] (circles) and [28]
(crosses). Quote from Ref. [10].

4.2. Ca and Sn isotopes

The M3Y-P6a interaction has extensively been applied to the isotope
shifts of the Ca and Sn nuclei [29].

As doubly-magic nuclei, both of 40Ca and 48Ca are expected to be well
described within the spherical MF calculations. However, the measured
isotope shift between them, which is nearly zero, has been hard to be repro-
duced by self-consistent MF calculations. Remarkably, this problem seems
to be solved in the MF calculations with M3Y-P6a, as a result of v̂(LSρ)ij . See
Ref. [29] for the detailed discussion.
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The isotope shifts are well reproduced by the spherical HFB calculations
with M3Y-P6a in a long chain of the Sn nuclei. In addition, a kink is newly
predicted at N = 82, by a mechanism similar to the Pb case. Measurement
of the isotope shifts above 132Sn is of particular interest, in order to confirm
the picture based on the 3N LS interaction.

5. Summary

Recent progress via the semi-realistic interaction with respect to the nu-
clear mean fields is presented. The magic and submagic numbers predicted
with the M3Y-P6 interaction are compatible with almost all available ex-
perimental data with only a few exceptions from light to heavy stable and
unstable nuclei. Although the prediction based on the quenching of the pair
correlation gives disagreement in 32Mg and in Zr with N & 60, this may
be lifted if the quadrupole deformation is taken into account. A part of
this success is attributed to the realistic tensor force included in the inter-
action. Effects of the χEFT-inspired density-dependent LS interaction on
the isotope shifts of the Z = magic nuclei are clarified. The kink of the Pb
nuclei and the vanishingly small shift between 40Ca and 48Ca, both of which
have supplied long-standing problems, are well described. Thus, although
applications of the semi-realistic interactions have yet been limited, the semi-
realistic interaction is suitable for investigating certain aspects of the nuclear
mean fields, demonstrating that proper combination of microscopic theories
and phenomenology on effective interactions can advance nuclear structure
physics.

This work is financially supported as KAKENHI Nos. 24105008 and
25400245.
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[1] K. Andō, H. Bandō, Prog. Theor. Phys. 66, 227 (1981).
[2] O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).
[3] H. Nakada, Phys. Rev. C 68, 014316 (2003).
[4] H. Nakada, Phys. Rev. C 87, 014336 (2013).
[5] H. Nakada, Phys. Rev. C 81, 051302(R) (2010).
[6] H. Nakada, K. Sugiura, Prog. Theor. Exp. Phys. 2014(3), 033D02 (2014).
[7] T. Shizuma et al., Phys. Rev. C 78, 061303(R) (2008).
[8] H. Nakada, T. Inakura, H. Sawai, Phys. Rev. C 87, 034302 (2013).
[9] N. Anantaraman, H. Toki, G.F. Bertsch, Nucl. Phys. A 398, 269 (1983).

http://dx.doi.org/10.1143/PTP.66.227
http://dx.doi.org/10.1016/j.ppnp.2008.05.001
http://dx.doi.org/10.1103/PhysRevC.68.014316
http://dx.doi.org/10.1103/PhysRevC.87.014336
http://dx.doi.org/10.1103/PhysRevC.81.051302
http://dx.doi.org/10.1093/ptep/ptu027
http://dx.doi.org/10.1103/PhysRevC.78.061303
http://dx.doi.org/10.1103/PhysRevC.87.034302
http://dx.doi.org/10.1016/0375-9474(83)90487-6


636 H. Nakada

[10] H. Nakada, T. Inakura, Phys. Rev. C 91, 021302(R) (2015).
[11] H. Nakada, M. Sato, Nucl. Phys. A 699, 511 (2002) [Erratum ibid. 714, 696

(2003)].
[12] H. Nakada, Nucl. Phys. A 764, 117 (2006) [Erratum ibid. 801, 169 (2008)].
[13] H. Nakada, Nucl. Phys. A 808, 47 (2008).
[14] T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
[15] P. Doll, G.J. Wagner, K.T. Knöpfle, G. Mairle, Nucl. Phys. A 263, 210

(1976).
[16] C.A. Ogilvie et al., Nucl. Phys. A 465, 445 (1987).
[17] H. Nakada, K. Sugiura, J. Margueron, Phys. Rev. C 87, 067305 (2013).
[18] S. Takeuchi et al., Phys. Rev. C 79, 054319 (2009).
[19] T. Sumikama et al., Phys. Rev. Lett. 106, 202501 (2011).
[20] Y. Suzuki, H. Nakada, S. Miyahara, in preparation.
[21] S. Miyahara, H. Nakada, under progress.
[22] P.-G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995).
[23] P.M. Goddard, P.D. Stevenson, A. Rios, Phys. Rev. Lett. 110, 032503 (2013).
[24] M. Kohno, Phys. Rev. C 86, 061301(R) (2012) [Erratum ibid. 88, 064005

(2013)].
[25] M.M. Sharma, G. Lalazissis, J. König, P. Ring, Phys. Rev. Lett. 74, 3744

(1995).
[26] R.B. Firestone et al., Table of Isotopes, 8th edition, John Wiley & Sons, New

York 1996.
[27] P. Aufmuth, K. Heilig, A. Steudel, At. Data Nucl. Data Tables 37, 455

(1987).
[28] I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
[29] H. Nakada, Phys. Rev. C 92, 044307 (2015).

http://dx.doi.org/10.1103/PhysRevC.91.021302
http://dx.doi.org/10.1016/S0375-9474(01)01283-0
http://dx.doi.org/10.1016/S0375-9474(02)01363-5
http://dx.doi.org/10.1016/S0375-9474(02)01363-5
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2007.12.011
http://dx.doi.org/10.1016/j.nuclphysa.2008.05.011
http://dx.doi.org/10.1103/PhysRevLett.95.232502
http://dx.doi.org/10.1016/0375-9474(76)90169-X
http://dx.doi.org/10.1016/0375-9474(76)90169-X
http://dx.doi.org/10.1016/0375-9474(87)90358-7
http://dx.doi.org/10.1103/PhysRevC.87.067305
http://dx.doi.org/10.1103/PhysRevC.79.054319
http://dx.doi.org/10.1103/PhysRevLett.106.202501
http://dx.doi.org/10.1016/0375-9474(94)00770-N
http://dx.doi.org/10.1103/PhysRevLett.110.032503
http://dx.doi.org/10.1103/PhysRevC.86.061301
http://dx.doi.org/10.1103/PhysRevC.88.064005
http://dx.doi.org/10.1103/PhysRevC.88.064005
http://dx.doi.org/10.1103/PhysRevLett.74.3744
http://dx.doi.org/10.1103/PhysRevLett.74.3744
http://dx.doi.org/10.1016/0092-640X(87)90028-3
http://dx.doi.org/10.1016/0092-640X(87)90028-3
http://dx.doi.org/10.1016/j.adt.2011.12.006
http://dx.doi.org/10.1103/PhysRevC.92.044307

	1 Introduction
	2 Mean-field approaches with semi-realistic interaction
	3 Magic numbers
	4 Isotope shifts — evidence of 3N LS interaction
	4.1 Pb isotopes
	4.2 Ca and Sn isotopes

	5 Summary

