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1. Introduction

The nuclear energy density functional (NEDF) theory [1] based on non-
relativistic Skyrme functionals [2] has been successful in describing proper-
ties of the atomic nucleus such as ground state binding energies and radii [3],
and excited states as giant resonances [4] or low-lying excitations [5].

To describe the pairing correlations of atomic nuclei [6] in the particle–
particle (pp) channel, most of the Skyrme functionals adopt a very simple
functional form [7] which is not related to the one used in the particle-hole
(ph) channel. Using a different functional form for the ph and pp channels
poses serious issues in configuration mixing calculations [8], in particular
giving rise to self-interaction problems which are very difficult to handle [9].
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A way to overcome such a problem is to use the same effective interaction in
both channels. Although this is the case of other effective interactions [10,
11], it is quite uncommon for the Skyrme interaction. As an example, we
refer to the work of Refs. [12,13] for more details.

In this article, we present a preliminary study of the pairing properties of
the extended Skyrme interaction [14–16], including higher order derivative
terms in symmetric nuclear matter (SNM). Although SNM can be considered
as an ideal model, it gives an insight and some very useful informations
concerning some basic behaviour of the effective interaction.

The article is organised as follows: in Sec. 2, we present the Skyrme
interaction with higher order gradients and we discuss some properties of the
residual pairing interaction. In Sec. 3, we present the basic BCS equations
used in this work and we discuss our results. Finally, we give our conclusions
in Sec. 4.

2. The Skyrme pseudo-potential

The most general form of the Skyrme functional up to 6th order in the
gradient expansion has been derived by [17]. In the present article, we
prefer to relate this functional to an effective interaction, thus reducing the
number of free coupling constants, as shown in [15]. The corresponding
N3LO Skyrme interaction reads [14,16]
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The notations used here are standard and more details can be found in
Ref. [1]. The spin-orbit and tensor terms are here discarded since they do
not contribute to the equation of state (EoS), although they do contribute
to its multipolar partial wave decomposition, as shown in [18]. The pa-
rameters of the Skyrme interaction have been fitted on the results of the
Brueckner–Hartree–Fock (BHF) calculations of the Catania group [20] for
infinite symmetric nuclear matter. In the present article, we restrict our-
selves to the parametrisation named VLyB62 which contains only gradients
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up to 4th order [21], whose parameters are given in Table I. More details
concerning the N2LO functional can be found in Ref. [22].

TABLE I

The parameters of the central part of the VLyB62 pseudo-potential.

α = 1/6, t3 = 13763 MeV fm3(1+α), x3 = 1

n i t
(n)
i

[
MeV fm3+n

]
x
(n)
i

0 0 −2394.15 0.632433
2 1 −194.381 35.182
2 2 513.2670 −1.01914
4 1 9.63577 3.65615
4 2 −654.3664 −1.22006

Furthermore, in the present article, we consider the pairing phenomena
between particles of the same species (i.e. the two particles are coupled to
total isospin T = 1), and we limit our study to the case of total angu-
lar momentum of the pair J = 0 [6], which is the most favourable cou-
pling in the atomic nuclei. In this case, the available couplings are [23]:
1S0,

3 P1,
1D2,

3 F3, where we have adopted the standard spectroscopic nota-
tion 2S+1LJ . We refer to Ref. [24] for a more detailed discussion. According
to the results of [23], the 1S0 channel is the dominant coupling for the de-
scription of nuclear superfluidity and we thus limit our analysis to this case.
By using the partial wave decomposition of the Skyrme interaction [18], we
can write immediately the pairing matrix element of residual interaction in
the 1S0 channels as

v(k,p) = t0(1− x0) + 1
6 t3(1− x3)ρ

α + 1
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For the particular parametrization used here, the density-dependent term
does not contribute to pairing since x3 = 1.
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In Fig. 1, we compare the diagonal matrix elements of the VLyB62 inter-
action and the Gogny D1S [11] as a function of the momentum k. Due to its
finite-range nature, the matrix elements of the Gogny interaction vanish at
k ≈ 1.5 fm−1, while the ones of VLyB62 go to infinity since the zero-range
nature of the interaction does not provide any natural cut-off on the matrix
elements. It follows that we have to introduce a cut-off Ec to avoid diver-
gences (see the next section). In the interval k ≤ 0.7 fm−1, both interactions
have the same shape, with a nearly constant shift between them.
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Fig. 1. (Colour on-line) Diagonal matrix elements of the VLyB62 and Gogny D1S
interaction as a function of the momentum k. See the text for details.

3. BCS equations

The BCS equations in the infinite nuclear medium read [19]

∆k = −
∑
p≥0

v(k, p)
∆p

2Ep
, (3)

N = 2
∑
p≥0

v2p . (4)

These two coupled equations are usually referred to the gap and number
equations [6], respectively. ∆k is the so-called pairing gap. For simplicity, we
have dropped the isospin index since we do not mix neutrons and protons.
The occupation factor v2k and the quasi-particle energy Ek are related by
the equations

v2k =
1

2

[
1− εk − µ

Ek

]
, (5)
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Ek =
√
(εk − µ)2 +∆2

k , (6)

where µ is the chemical potential, which is obtained by keeping constant
the average number of particle (per unit volume) along the calculations.
εk corresponds to the Hartree–Fock (HF) single particle spectrum and it is
defined as

εk =
~2k2

2m
+ U(k) . (7)

For simplicity, we consider the free spectrum, that is U(k) = 0. The use of a
contact interaction for the pairing channel implies that the BCS equations
diverge [25], and a cut-off parameter is required to overcome the problem.
Following Ref. [26], we solve the BCS equations by restricting the integration
area to

kmin =

√
kF −

2m

~2
Ec , (8)

kmax =

√
kF +

2m

~2
Ec . (9)

In Fig. 2, we show the value of the pairing gap at the Fermi surface as
obtained by Eq. (3) as a function of the density of the system. Since the
choice of the cut-off parameter is arbitrary, we present the results as a func-
tion of different values of Ec within a range of values which are commonly
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Fig. 2. (Colour on-line) Pairing gap at the Fermi surface as a function of the
density of the system for the VLyB62 interaction and different values of the cut-off
parameter Ec.



656 A. Pastore, D. Davesne, J. Navarro

used for nuclear structure calculations in finite nuclei (see Ref. [27] for de-
tails). We leave the possibility of introducing a regularisation procedure as
done in Ref. [25] in a future work.

We have observed that for values of Ec ≥ 60 MeV, the pairing gap is
suppressed. This can be understood since we include in the BCS equation
strongly repulsive matrix elements (see Fig. 1). The magnitude of the pairing
gap is not very sensitive to the choice of the cut-off parameter within a range
of Ec ∈ [20–50] MeV. The authors of Ref. [26] have shown that the pairing
gap obtained using several Skyrme interactions increases with the cut-off
up to a plateau where it stays rather constant despite the increase of the
available space. Beyond such an interval, the calculation starts to diverge.
The position of the plateau changes with the interaction, but in the case of
the VLyB62, it is located in a region suitable for calculations in finite nuclei.

In Fig. 3, we show for the VLyB62 interaction with Ec = 40 MeV the
evolution of the pairing gap ∆k as a function of the momentum k. Contrary
to the standard case of a simple contact interaction [7], the pairing gap has
an explicit dependence on the momentum k. The pairing gap is attractive
in the low-momentum region up to k ≈ 1.3 fm−1, then it becomes repulsive.
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Fig. 3. (Colour on-line) Pairing matrix elements ∆k as a function of the momen-
tum k. See the text for details.

4. Conclusions

We have studied the pairing properties of the extended Skyrme inter-
action. By generalising the work done in Ref. [26], we have calculated the
matrix element in the 1S0 channel for the Skyrme N3LO interaction [21].
We have solved the BCS equations in SNM and for the free single parti-
cle spectrum. Due to the ultraviolet divergence [25], we have studied the
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dependence of our results on the value of the cut-off parameter Ec. We
have observed that the VLyB62 interaction gives reasonable pairing gaps
compatible with the existing literature for several values of the cut-off pa-
rameter. Since the interaction has not been explicitly constrained in the
pairing channel, we can consider such results quite encouraging, although a
more detailed investigation is necessary.
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