
Vol. 8 (2015) Acta Physica Polonica B Proceedings Supplement No 3

UNIVERSAL, LOW-DIMENSIONAL SHAPE
PARAMETRIZATION OF FISSIONING NUCLEI∗

K. Pomorski, B. Nerlo-Pomorska

Uniwersytet Marii Curie-Skłodowskiej, Lublin, Poland

J. Bartel

IPHC and Université de Strasbourg, France

C. Schmitt

GANIL, Caen, France

(Received November 10, 2015)

A new parametrization of nuclear shapes is proposed as a Fourier series
of the square of the distance from the symmetry axis to the surface of the
nucleus. It is shown that using the three lowest terms of such an expansion
is sufficient to obtain a rather good reproduction of the form of the liquid-
drop fission barrier. Taking into account higher order terms of the rapidly
converging Fourier series increases the precision of the estimates of both
macroscopic and microscopic parts of the total nuclear binding energy.
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1. Introduction

A precise but low-dimensional description of nuclear shapes, in particular
in connection with fission, is one of the most demanding tasks nuclear physi-
cists have been confronted with since the first paper of Bohr and Wheeler on
the fission process [1]. It turns out that the traditional expansion of the nu-
clear surface in spherical harmonics, proposed by Lord Rayleigh in the 20th

century, is converging rather slowly. It has, indeed, been shown in Ref. [2]
that one needs at least the 7 lowest-order terms of such an expansion in or-
der to obtain an accurate profile of a left–right symmetric liquid-drop fission
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barrier, to describe the nuclear shape from the ground state, through the
saddle up to the scission point. A reasonably good description of the fission
barrier is obtained using the Funny-Hills (FH) shape parametrization [3] or
its improved version known as the Modified Funny-Hills (MFH) shapes [2].
It is, however, difficult to get an estimate of the accuracy of the calculated
energies of fissioning nuclei that can be obtained in these two parametriza-
tions. Using a rather similar description, expanding the square distance
ρ2s (z) from a surface point to the symmetry z axis in terms of Legendre
polynomials as proposed by Trentalange, Koonin and Sierk (TKS) [4], such
an estimate on the accuracy can be given by simply carrying the expansion
to higher orders. The TKS expansion is, however, difficult to handle since
the obvious condition ρ2s (z) > 0 imposes strong limitations onto the involved
deformation parameters [2]. Other often quite powerful parametrizations of
the nuclear shape exist of course and can be found e.g. in Refs. [5, 6]. An
alternative expansion of ρ2s (z) into a Fourier series, as proposed below, seems
be rapidly converging and easier to handle.

2. Fourier expansion of deformed shapes

The profile function of any nuclear shape is expanded in a Fourier series
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where ρs(z) is the distance from a point on the surface at coordinate z (see
Fig. 1) to the symmetry axis (z axis) and R0 the radius of the corresponding
spherical shape having the same volume. The extension of the shape along
the symmetry axis is 2 z0 with left and right ends located at zmin = zsh− z0
and zmax = zsh + z0, where ρs vanishes, a condition which is automatically
satisfied by (1). The shift coordinate zsh is chosen such that the centre of the
nuclear shape is always located at the origin of the coordinate system. One
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Fig. 1. Nuclear shape parametrization in cylindrical coordinates.
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introduces through z0=cR0 an elongation parameter c that is equal to unity
for the sphere, smaller than one for oblate and larger than one for prolate
deformations. The parameters a2, a3, a4 describe respectively quadrupole,
octupole and hexadecapole deformations, or better to say, elongation, reflec-
tion asymmetry and neck degree of freedom.

Due to the high incompressibility of nuclear mater, one assumes that
the volume of a deformed nucleus is the same as the one of spherical shape
which yields the following relation between the elongation parameter c and
all even coefficients an

π

3c
=
∞∑
n=1

(−1)n−1
a2n

2n− 1
. (2)

This relation allows to evaluate the coefficient a2 as a function of the elon-
gation c and the higher order coefficients a2n. The spherical shape corre-
sponding to c = 1 and ρ(zsh)/R0 = 1 leads to the following values of the
expansion coefficients: a2 = 1.03205, a4 = −0.03822, . . .

In the case of symmetric fission, zsh = 0 and the geometrical scission
configuration is located at z = 0 which implies (see Eq. (1))

∞∑
n=1

a2n = 0 . (3)

When limited to the first two leading terms, a2 and a4, the above equation
allows, together with (2), to determine the scission line, then given by

a4 +
π

4c
= 0 . (4)

In the presence of odd-multipolarity deformations, one can make sure,
through an adequate choice of the above introduced shift parameter zsh,
that the centre of mass of the shape is always located at the origin of the
coordinate system
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∫
V z d3r∫
V d3r

=
π
∫ zmax

zmin
ρ2s (z) z dz

π
∫ zmax

zmin
ρ2s (z) dz

= 0 (5)

which together with (1) leads to the following expression for the shift coor-
dinate:
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where (2) has been used.



670 K. Pomorski et al.

The relative distance between the mass centres of left (zl) and right (zr)
fragments (see Fig. 1) is given by
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(7)
where zneck determines the location of the plane which separates the two
fragments. Considering first the case of symmetric fission, where all aν with
odd ν vanish, and consequently zneck = 0, one obtains from Eq. (7)
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In the asymmetric case, we define the neck coordinate zneck as the location,
where the shape ρ2s (z), Eq. (1), has an extremum. Since such an extremum,
in the case of a fissioning nucleus generally a minimum will always occur,
even for reasonably strong asymmetry, close to the centre of the shape, we
determine the coordinate xneck = (zneck−zsh)/z0 by a Taylor expansion of the
sine and cosine functions around x = 0. From the condition dρ2s (z)/dz = 0,
one then obtains the following expression for xneck

xneck =
4

π

∑
n na2n+1∑

n(2n− 1)2 a2n
(9)

and zneck = zsh +z0 xneck. This procedure has been tested for a large variety
of shapes and turns out to work very accurately as long as the shapes are
not pathological, i.e. physically relevant in the fission process.

3. Potential energy surface of a charged liquid drop

In the liquid drop (LD) model, the deformation energy of a nucleus as
function of its deformation is given by (see e.g. [6])

∆E(def)

Esurf(sph)
= Bsurf(def)− 1 + 2χ[BCoul(def)− 1] , (10)

where ∆E(def) = ELD(def)−ELD(sph) is the difference between the energies
of the deformed and the spherical nucleus, and χ is the fissility parameter
defined as

χ =
ECoul(sph)

2Esurf(sph)
, (11)

whereEsurf(sph) andECoul(sph) are respectively the surface and the Coulomb
energies of the spherical nucleus. An example for such a LD deformation en-
ergy is presented for χ = 0.8 in Fig. 2. One observes that the path to fission
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goes towards the lower right end of the (c, a4) plane, where scission occurs.
Such a presentation in a (a2, a4), or as shown here, in a (c, a4) deformation
space is not very convenient for practical calculations. We would, indeed,
rather like to have the same interval of a4 values for all values of c.

Fig. 2. Potential energy surface ∆E(def)/Esurf(sph) in the (c, a4) plane for a nu-
cleus with fissility parameter χ = 0.8.

That is why we introduce new rotated coordinates (ξ, σ) in which the
ξ-axis (σ = 0) corresponds roughly to the fission path{

c− 1 = ξ cos π6 − σ sin π
6

3 a4 = ξ sin π
6 + σ cos π6

. (12)

The potential energy surface, the same as in Fig. 2, but now in the new
(ξ, σ) coordinate system is shown in Fig. 3.

Fig. 3. The same as in Fig. 2 but on the (ξ, σ) plane.
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The LD potential energy surface for reflection asymmetric shapes (a3 6=0)
is presented in Fig. 4 in the (ξ, a3) plane. One concludes from this figure
that a range of −0.25 < a3 < 0.25 should be sufficient to describe the fission
valley assuming the amplitude of the microscopic part of the energy in the
asymmetry direction to be smaller than 5 MeV.

Fig. 4. The same as in Fig. 2 but on the (ξ, a3) plane.

To evaluate the effect of higher order deformation term on the energy
of the nucleus at the saddle and at the scission points, we have determined
the LD energy in the (a4, a6) plane. The potential energy surfaces are
shown in Figs. 5 and 6. One concludes from these results that taking the a6
deformations into account decreases only slightly (∼ 0.5 MeV) the energy of
the saddle point (Fig. 5) and by about ∼1 MeV at the scission configuration
(Fig. 6).

Fig. 5. LD potential energy surface on the (a4, a6) plane at the saddle point.
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Fig. 6. The same as in Fig. 5 but around the scission configuration.

4. Summary

We have developed an efficient way to describe the shape of deformed
nuclei using only a few deformation parameters. The new parametrization is
equally efficient around the ground state as at very elongated nuclear shapes
close to the scission configuration. The decomposition into the Fourier series
of the square of the distance from the symmetry axis to the surface of the
nucleus, not used before in the literature, is rapidly convergent. For many
purposes, one can use only the first three deformation parameters: a2 related
to the elongation, a3 responsible for the mass asymmetry and a4 playing the
role of the neck parameter. The higher deformation degrees of freedom can
be easily added when a better precision of the calculations is desired. The
new shape parametrization is especially suitable for the description of the
fission process. The frequently used parametrization βλ in spherical har-
monics is not so rapidly converging, requiring the 7 first even βλ parameters
to obtain a proper description of the shape of the liquid drop fission barrier
from the ground state until the scission point [2], while a similar accuracy
is reached in the above presented Fourier decomposition taking into account
only the three first even coefficients a2, a4, a6.
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