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Over several decades doubt has been cast on the “β vibration” interpre-
tation of the first excited 0+2 rotational bands in deformed nuclei. Experi-
mental evidence is presented to show that low-lying 0+2 bands in deformed
nuclei are 2p–2h seniority zero pairing isomers lowered into the pairing gap
by configuration-dependent pairing. Doubts then arise about the interpre-
tation of the lowest Kπ = 2+ rotational bands observed in all deformed
nuclei as “γ vibrations”. Experimental evidence for these Kπ = 2+ ro-
tational bands existing as a consequence of the lack of axial symmetry is
addressed. We are forced to conclude that “phonon excitation” models of
even–even deformed nuclei are deeply flawed.
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1. Introduction

The degrees of freedom that determine the structure of nuclei at low
energies have been a subject of controversy for many decades. With the
wealth of experimental spectroscopic data that now exist throughout the
nuclear chart, it is time to address some of the long-held assumptions that
are generally treated as “gospel” in the textbooks. One of the basic de-
grees of freedom, that has this status, is the ability of both spherical and
deformed nuclei to vibrate. In quadrupole deformed even–even nuclei, the
lowest excited 0+2 has been taken to be a vibration along the axis of symme-
try, a “β vibration”. The lowest Kπ = 2+ band is identified as the orthog-
onal vibration of the nuclear shape perpendicular to the symmetry axis, a
“γ vibration”. As the 0+2 and Kπ = 2+ band heads are always found to be

∗ Presented at the XXII Nuclear Physics Workshop “Marie and Pierre Curie”, Kazimierz
Dolny, Poland, September 22–27, 2015.

(675)



676 J.F. Sharpey-Schafer

within the pairing gap of about 2.0 MeV, it is assumed that they must arise
from collective motions of the nucleons, shape vibrations being the obvious
candidates.

The liquid drop model of the nucleus had considerable success in the
1930s in giving a useful account of fission and a helpful picture of compound
nuclear reactions. The vibrations of a spherical liquid drop had been studied
long before the advent of quantum mechanics by Lord Raleigh [1]. In 1879,
by considering an inviscid incompressible liquid sphere, he obtained

ω2 =
(λ− 1)λ(λ+ 2)γ

ρR3
, (1)

where ω is the frequency of the λ pole oscillation of the drop, γ is the
surface energy per unit area due to the surface tension, ρ is the density of
the liquid and R is the radius of the spherical drop. That ω2 ∝ γ/ρR3 is
easily obtained by elementary dimensional analysis. The application of this
to a charged spherical nucleus, also assuming no viscosity and irrotational
flow, gives

ω2 =
(λ− 1)λ(λ+ 2)

3
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R2
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− 2(λ− 1)λ
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4πε0R3
AmpA2

, (2)

where the radius of the nucleus R0 = RAA
1/3, Cs is the surface energy term

in the Weizäcker mass formula ∼ 18 MeV [2], m is the nucleon mass, A is the
atomic mass number, the second term is due to a uniform charge Ze+ spread
throughout the nucleus and mp is the mass of the proton. The second term
has little effect on ω for nuclei with Z � 90. For A = 150, the Rayleigh
term gives Ex = ~ω ≈ 2.4 MeV.

However, we know from the Strutinski [3, 4] shell corrections to the liq-
uid drop that the shell corrections oscillate much more rapidly than the
liquid drop energy with increasing quadrupole deformation. Hence, for any
deformed nucleus, the potential it sees, with respect to quadrupole defor-
mation, will be more constrained than the liquid drop which will increase
any vibrational frequency and the Rayleigh vibrational excitation energy.
But we also know that the moments-of-inertia I, deduced from the mea-
sured quadrupole moments and the energy spacing of rotational bands, is
between the irrotational and the rigid body values. The increase of I from
irrotational towards rigid will surely increase any vibrational frequency of
the shape. Doubts about the identification of 0+2 states with β vibrations
have continued for several decades. An authoritative review of the properties
of these states has been made by Garrett [5] who concludes that . . . most
of the 0+2 states are not β vibrations. (. . . ) microscopic calculations of 0+2
states underscores the need to consider the role of pairing in the description
of these states. So what are these states?
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2. Key experimental data
The B(E2) transition rates from 0+2 bands were comprehensively re-

viewed by Garrett [5] and will not be repeated here. In their iconic textbook,
Bohr and Mottelson are clear about the meaning of a vibration: A vibrational
mode of excitation is characterized by the property that it can be repeated a
large number of times. The nth excited state of a specified mode can thus be
viewed as consisting of n individual quanta. The quanta obey Bose statistics
. . . [6] (page 330). Bohr and Mottelson themselves point out [7] that the
0+2,3 states in 168Er are not “β vibrations”. A very beautiful experiment by
Kulp et al. [8] clearly demonstrates that there are no candidate two phonon
0+3 states in the N = 90 nucleus 152Sm. The 0+2 states themselves, in the
N = 88 and 90 nuclei, lie at low excitation energies of less than 900 keV.
They are populated strongly in two-neutron transfer reactions when the
transfer is across N = 89. An example of two particle transfer is given by
Shahabuddin et al. [9] for the 152Gd(t, p)154Gd reaction. The 0+2 state is very
strongly populated and the 0+3 state and 0+4 states are also fairly strongly
populated. A similar 0+2 state in 150Sm is only very weakly populated in the
148Nd(3He, n)150Sm two-proton transfer reaction [10]. This demonstrates
that these 0+n states near N = 90 have significant amounts of paired two
neutrons outside the target core in their wavefunctions. Unfortunately, two
nucleon stripping only gives information on the spin and parity of the final
state and not on the specific single particle orbital involved. Single particle
transfer does not populate these 0+2 states with sufficient strength to give
any information on the angular momentum of the transferred nucleon.

However, the intrinsic configuration of any core excitation of an even–
even nucleus can be coupled to by the odd nucleon, or nucleon hole, in the
neighbouring odd nuclei as long as that nucleon is not Pauli blocked by the
core excitation having a time-reversed pair of nucleons in the same orbital.
We, therefore, have to look for the orbital that does not couple to the core
excitation. Schmidt et al. [11] have made a very comprehensive study of
the low-spin states of 155Gd using the (n, γ) reaction and (d, p) and (d, t)
neutron transfer reactions. Candidates for the coupling of the low-K orbitals
to the 154Gd 0+2 state are found. Their assignment of the 592 keV level as the
[521]3/2− neutron coupled to the 0+2 state in 154Gd is elegantly supported
by the data from the 157Gd(p, t)155Gd reaction [12]. Our 154Sm(α, 3n)155Gd
experiment at iThemba LABS using the AFRODITE γ-ray spectrometer
gives a very complete decay scheme for the lower- to mid-spin states in
155Gd. If the [505]11/2− neutron can couple to the 0+2 state in 154Gd, then
there should be an 11/2− level at about 802 keV excitation energy, 681 keV
above the [505]11/2− isomer. We find no sign of such a state or of the
rotational band expected to be built upon it [13]. This indicates that the
core 0+2 state in 154Gd has two [505]11/2− neutrons as a major component
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of its configuration. The [505]11/2− neutron is Pauli blocked from coupling
to the core 0+2 state. Clearly the same blocking should occur for all the
[505]11/2− neutrons outside even–even cores in the N = 88 and 90 nuclei.
Indeed, this blocking situation exists in all other neighbouring odd neutron
nuclei.

Recent measurements at iThemba LABS have identified the Kπ = 0+2
bands in 158

68 Er90 [14] and 160
70 Yb90 [15] to higher spins than seen in β-decay

experiments. These measurements allow the comparison of the behaviour
of these bands with spin with that of the ground state yrast Kπ = 0+1
bands, as the proton number increases and the deformation decreases. This
comparison is shown in Fig. 1 where the excitation energies are plotted
against spin for 150

60 Nd90 to 160
70 Yb90. It is immediately obvious that the

ground state Kπ = 0+1 bands are decreasing in deformation, as the proton
number Z increases after 156

66 Dy90, while the Kπ = 0+2 bands maintain an
almost constant moment-of-inertia. This is in contrast to the predictions
of all IBA and similar models where the moments-of-inertia of the excited
Kπ = 0+2 bands are always less than the moments-of-inertia of the ground
state Kπ = 0+1 bands. To quote [16] While the IBA calculations using the
most common form of the IBA Hamiltonian reproduce the energetics of the
0+2 mode, they fail to account for the properties of the states built upon it.

 

 Fig. 1. Excitation energy as a function of angular momentum for members of the
ground state 0+1 bands and the ex-“β vibrations” 0+2 for the N = 90 isotones
[14, 15]. The deformation of 0+1 ground state bands decreases as the proton num-
ber Z increases, whereas the deformation of the excited 0+2 ex-“β bands” does not.
This is, in total, contradiction to the predictions of all IBM calculations [16].
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It is not very usual for γ bands to be identified much above spin 12+

as they are usually about 1.0 MeV above the yrast line. This makes it
difficult to populate such states in fusion-evaporation (HI,xn) reactions as
they are embedded in other structures which compete for intensity. The
use of very heavy ion beams to Coulomb excite the most deformed nuclei
has, in favourable cases, allowed γ bands to be traced to much higher spins.
A notable feature of γ bands is that they track the intrinsic configuration,
usually the ground state that they are based on. An example of this is
shown in Fig. 2 for the γ band in 156Dy [17] (and references therein). Here,
both the even and odd spin members of the γ band track the ground state
configuration up to spins of 32+ and 31+ respectively. 

 

Fig. 2. Plot of the excitation energy, minus a rigid rotor, for the positive-parity
bands in 156Dy90 [17]. The Second Vacuum (SV) band is the 0+2 ex-“β band”
which we claim is a “pairing isomer”.

3. Pairing isomers

Clearly, the 0+2 states in N = 88 and 90 nuclei are not due to β vi-
brations of the nuclear shape. But if they are 2 neutron 2 neutron-hole
states, how is it that they can be lowered so far into the pairing gap? The
solution was found in the early 1970s and applied to the 0+2 states in Th,
U and Pu nuclei. These had been observed in (p, t) two neutron pick-up
reactions by Maher et al. [18] but not in (t, p) two neutron stripping reac-
tions by Casten et al. [19]. The solution put forward by Griffin, Jackson
and Volkov [20] was that simple monopole pairing was too crude an approx-
imation to explain excited 0+n states. With monopole pairing all the two
particle transfer strength is decanted into the ground state [21]. Clearly,
this is not the case for actinide nuclei or for the N = 88 and 90 nuclei dis-
cussed above. Reference [20] postulates that, in the pairing model, scattering
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from one pair of time-reversed orbits to another pair of time-reversed orbits
the probability increases with the minimisation of the momentum transfer
in the process or, indeed, with the overlap of the wavefunctions of the initial
paired orbit with the wavefunctions of the final paired orbit. Thus nucleons
in low-Ω Nilsson orbits are inhibited from scattering into high-Ω orbits and
vice versa. Nucleons in low-Ω Nilsson orbits have positive (prolate) single
particle quadrupole moments, whereas nucleons in high-Ω orbits have neg-
ative (oblate) quadrupole moments. A better approximation to the pairing
interaction is one that depends on the quadrupole moment of the nucleons
involved: hence “quadrupole pairing”.

To demonstrate the effect of this improvement in the pairing interaction,
Ref. [20] has a convincing toy model: suppose that∆pp ≈ ∆oo � ∆op, where
∆pp, ∆oo, and ∆op are the pairing interactions between nucleons scattering
between prolate–prolate, oblate–oblate and prolate–oblate Nilsson orbitals.
Also suppose there are n prolate and n oblate orbitals at the Fermi surface.
Assume that each pairing matrix element is the same for the same type −a,
but the prolate–oblate matrix elements are very weak −εa. Then if the
prolate n × n matrix is A, the oblate matrix is also A, the matrix for the
total system is (

A εA
εA A

)
. (3)

Then, there are (2n − 2) states with zero energy and 2 states with spin
0+ and energies E1,2 = −(1 ± ε)na and separated by an energy of 2εna.
Obviously, there is mixing between the two lowered 0+ states depending on
the size of ε. It was pointed out by Abdulvagabova, Ivanova and Pyatov [22]
that, in reality, the matrix (3) is not symmetric in the density of prolate and
oblate states. High-Ω oblate states are extruded to the Fermi surface at the
onset of deformation but have a much lower density of states than the prolate
low-Ω states that are driving the deformation. Hence, the pairing interaction
for oblate orbitals will be much reduced compared to the pairing involving
prolate orbitals. Hence, the prolate paired state will be the 0+1 ground state
and the oblate paired state will be the excited 0+2 state. These authors [22]
pointed out that these conditions also applied in the N ∼ 90 nuclei as well as
in the actinides. Other authors have also developed this quadrupole pairing
model [23–25]. The latter authors coined the term “pairing isomers” for these
0+2 states. (We are reliably informed by Ingmar Ragnarsson that Ricardo
Broglia insisted on this label in spite of these states being nowhere near
“isomeric”!)

It becomes glaringly obvious that near N = 90 the [505]11/2− neutrons
will not partake in the monopole pairing if the conjecture of Ref. [20] is
correct. Indeed this is found to be the case. In 1982, Garrett et al. [26]
pointed out that the [505]11/2− neutron bands in the odd neutron nuclei
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near N ∼ 90 “back-bend” (i13/2 “AB” alignment) at a critical frequency
of ~ωc ≈ 0.28 MeV, which is the same unblocked frequency as the “back-
bends” in the neighbouring even–even and odd proton nuclei yrast bands.
In contrast, in odd neutron nuclei, the neutrons in low-Ω Nilsson orbits
block some of the monopole (prolate) pairing giving a “back-bending” critical
frequency for the energy required to align a pair of i13/2 neutrons of ~ωc ≈
0.23 MeV [27]. The systematics of current data on AB alignment frequencies
for nuclei with N = 88 to 98 are shown in Fig. 3. The horizontal broken
lines in Fig. 3 indicate the average critical frequencies for even–even, odd
proton and odd neutron nuclei. The few examples of the critical frequencies
in [505]11/2− odd neutron bands are marked with hour-glass symbols. It is
clear that the AB critical frequency is not blocked by the [505]11/2− neutron
orbital. The two known examples of AB alignments in 0+2 bands are marked
in Fig. 3 with a star symbol. Again, there is no reduction of the critical
alignment frequency which means that, whatever the configuration of the
0+2 state is, the neutrons involved in the configuration do not partake in
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Fig. 3. Critical frequencies ~ωc for the alignments of the AB “back-bends” due to
i13/2 neutrons in a variety of rotational bands in nuclei with neutron number be-
tween N = 88 and 98. The long-dashed line is the average ~ωc for even–even
nuclei, the dash-dotted line is the average ~ωc for odd proton nuclei and the short-
dashed line is the average ~ωc for the odd neutron nuclei. Clearly, the odd neutron
[505]11/2− nuclei and the Second Vacuum (SV) 0+2 alignments do not suffer the
same reduction in ~ωc that the other odd neutron bands do. Errors on the data
points are between 5 and 10 keV. Data with larger errors have not been included.
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the monopole pairing. Figure 4 (a) shows the alignments of the + and −
signatures of the [505]11/2− band compared with those of the [521]3/2−

ground state band in 159Er. Figure 4 (b) shows the alignments of the yrast
band and the 0+2 ex-“β vibration” in 156Er [28].
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Fig. 4. Alignments of bands in (a) the odd neutron nucleus 159Er91 showing the
reduction of ~ωc due to blocking of the monopole pairing in both signatures
(+ and −) of the [521]3/2− band compared to the lack of blocking in both sig-
natures of the [505]11/2− band. (b) The even–even nucleus 156Er88 showing that
the ex-“β vibrational” band 0+2 has the same unblocked critical alignment frequency
~ωc as the yrast band.

I draw an analogy between the trajectory of the [505]11/2− neutron or-
bital, with respect to the Fermi surface, and that of a “flying fish”! The
[505]11/2− orbital is chased to the surface by the increasing nuclear defor-
mation as the neutron number is increased. It then flops back into the Fermi
sea as orbitals get filled by further increases in the neutron number. As the
[505]11/2− orbital retreats from the Fermi surface, the excitation energy of
the 0+2 states increase, driving them nearer the point where the p–h states
start. This will lead to an increase in mixing with other configurations.

4. Axial asymmetry

This year 2015 is the 40th anniversary of the Nobel Prize given to Aage
Bohr and Ben Mottelson. It is therefore appropriate to turn to their iconic
textbook for advice. On page 166 they say [6] . . . but it might be expected that
the zero-point oscillations in the γ direction would be of similar magnitude
as those in the β direction. As the data indicate that any “β vibrations” are
at higher excitation energies than formerly imagined, then we might well
expect any “γ vibrations” to also be well above the pairing gap? In that
case, we are left with the other explanation given by Bohr and Mottelson
that the plethora of Kπ = 2+ bands found in deformed nuclei throughout



Are Deformed Nuclei Stiff Against Quadrupole Vibrations? 683

the nuclear chart are due to these nuclei not being axially symmetric [6]
(page 166). The way of deciding between γ vibrations and axial asymmetry
is to look experimentally for the predicted two-phonon states for vibrations
or the lone Kπ = 4+ band predicted for axial asymmetry. This is difficult,
as these structures are even further from the yrast line and will be embedded
in a high density of p–h states with which they will mix. The experimental
data to date is not very convincing and is too voluminous to be presented
in this short talk. Reference [29] deals interestingly with axial asymmetry
and an overview of experimental data may be found in Ref. [30].

5. Short discussion

The vast expansion of the experimental data now available to us has in
some ways simplified our approach to the structure of quadrupole deformed
nuclei. It is no longer fruitful to postulate the existence of “phonon” or “bo-
son” excitations and then expand these in some convenient basis or other,
inventing an interaction with parameters determined by a variational calcu-
lation and “fitting” the available experimental data using some preconceived
view of the physics. We now know that the ex-“β vibrations” are seniority
zero states that are not handled by over simplified monopole pairing. The
assumptions needed to support the idea of “γ vibrations” are unnecessary
and the observation of many Kπ = 2+ bands in even–even nuclei can ad-
equately be described by the axial asymmetry of the nuclear mean field.
Hopefully, this understanding of the basic physics will improve our theoret-
ical descriptions of the structure of nuclei. In spherical nuclei, a doubt has
also been cast on the interpretation of the standard “vibrational” even–even
Cd isotopes [31]. If we take the Raleigh formula seriously, then octupole
vibrations should also lie well above the pairing gap. This would leave the
low-lying negative parity states in deformed nuclei arising from the break-
ing of reflection symmetry. A major challenge for the future is to identify
experimentally where the actual vibrational excitations of the nuclear shape
are located.

I must thank all my colleagues in South Africa for their help, encour-
agement, enthusiasm and comradeship as well as many colleagues in other
places. I should thank the National Research Council of South Africa for a
modest grant which enabled me to attend this splendid Workshop.
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