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A comprehensive calculation of ground state properties of a large num-
ber of even–even nuclei has been carried out using the Gogny D1S force
within the extended Thomas–Fermi scheme. It is found that the calcu-
lated self consistent potentials and densities can be parametrised as Fermi
distributions. As the next step, the parametrised potentials and densities
are used to calculate the smooth part of energy and the shell corrections
within the Wigner–Kirkwood semi-classical averaging scheme. The shell
corrections thus obtained, along with a simple liquid drop prescription, is
found to yield a reasonably good description of ground state masses for
nuclei spanning the entire periodic table.
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1. Introduction

The determination of the one-body density matrix is an important step
in the calculation of ground and excited state properties of the nuclear many-
body systems. In the case of a finite nucleus, obtaining the one-body density
matrix is a computationally demanding task, and hence several approxima-
tion schemes of varying degree of sophistication have been developed in the
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past. Some of the notable approaches are the Negele–Vautherin approach [1],
the Campi–Bouyssy approach [2] and the semi-classical Extended Thomas–
Fermi (ETF) approach of Soubbotin and Viñas [3, 4].

The ETF approach is based on the semi-classical Wigner–Kirkwood ~ ex-
pansion of the distribution function. It has a number of advantages. Firstly,
it gives a very intuitive picture of the physical process, since the ETF is
deeply rooted in the classical periodic orbit theory [6]. Secondly, it is very
systematic and yields the density functionals order by order. The ETF ap-
proach with the Skyrme interaction has been applied very successfully to a
range of nuclear problems [5]. The ETF approach has been extended to the
non-local single particle Hamiltonians [3], and hence can be employed in the
case of finite range forces, like the Gogny force. It has been shown that the
ETF density functional obtained for the Gogny force yields the ground state
properties almost coincident with the Hartree–Fock calculations [3, 4].

On the other hand, alternative approaches to ground state properties
like the microscopic–macroscopic (mic–mac) scheme using the semi-classical
Wigner–Kirkwood averaging [6–10] has been shown to be quite successful
in describing the ground state masses of the nuclei belonging to all the
parts of the periodic table [11, 12]. In the present work, we attempt to
explore an interesting possibility: use of self consistent potentials and densi-
ties obtained within the ETF framework to calculate nuclear masses in the
Wigner–Kirkwood based mic–mac approach.

We begin with a very brief overview of the ETF formalism, followed by
the essentials of the mic–mac approach using Wigner–Kirkwood averaging
scheme. The results will be presented and discussed in the third section.
The summary and conclusions are contained in the last section.

2. Formalism and details of calculations

2.1. ETF calculations

The ETF expansions are usually derived from the Wigner–Kirkwood dis-
tribution [6]. The latter is known to have an apparent divergence problem
at the classical turning points: in principle, this does not matter since, ul-
timately, the integrated quantities, such as particle numbers, energies, etc.
are relevant. However, the divergence can also be eliminated, for instance,
from the kinetic energy distribution, by expressing the latter as a functional
of the local density. Effectively, this is achieved by elimination of the chem-
ical potential, the potential energy V and its derivatives, in favour of local
density and its derivatives. This is often called the Extended Thomas–Fermi
expansion. The ETF expansion, therefore, automatically leads to a density
functional. The ETF functional can be employed within the framework of
the well-known Kohn–Sham scheme, and the resulting energy as a functional
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of the local density can be expressed as [3]

ε [ρ] =
~2

2m
τ [ρ] +

1

2
VDρ+ εKS

ex [ρ] . (1)

Here, τ is kinetic energy functional, VD is direct potential and εKS
ex repre-

sents exchange correlation energy (see Ref. [3] for details). The energy of
the system of fermions can be obtained either by solving the Kohn–Sham
equation explicitly or equivalently by minimisation of the energy functional
directly.

In the present work, we employ the well-known finite range Gogny D1S
interaction. The ground state energy is obtained through minimisation, and
for the analysis reported here, we have chosen a set of 818 even–even nuclei
from 12O to 282Ds. Assuming spherical symmetry, the ETF calculations are
carried out for each of these nuclei resulting in self-consistent potentials and
densities. It is found that the self-consistent potentials and densities follow
the standard Woods–Saxon form to an excellent degree of approximation.
Our principal goal of this work is to explore the possibility of using these
potentials and densities. Therefore, it is desirable if the parameters appear-
ing in the Woods–Saxon form factor could be written as simple functions
of certain relevant quantities. It turns out that such a parametrisation is
indeed possible, and the general form that is used here, can be written as:

Q = P0

(
1 + P1 I + P2 I

2
)

+ P3

(
1 + P4 I + P5 I

2
)
A1/3 . (2)

Here, I = (N − Z)/A. The quantity Q could be half density radius or
diffusivity or strength of potential, and Pj are free parameters. Depending
on the quantity, one or more of these parameters are set to zero.

It turns out that the above Ansatz gives an excellent description of the
Woods–Saxon parameters for the entire mass range considered here. As an
example, we now present and discuss the half density radii and diffusivities
appearing in the neutronic mean field. The half density radius and diffusivity
have been parametrised as:

R
(n)
1/2 = 0.438 (1− 2.207 I) + 1.184

(
1 + 0.067 I − 0.045 I2

)
A1/3 , (3)

an = 0.346
(
1 + 0.379 I + 2.724 I2

)
+ 0.023 (1− 2.097 I)A1/3 . (4)

Differences between the exact and the fitted values of these parameters have
been plotted in Fig. 1. Clearly, the proposed parametrisation is satisfactory.
Quantitatively, the respective r.m.s. deviations are 0.02 fm and 0.01 fm
respectively for half density radius and diffusivity, indicating high degree of
accuracy of these parametrisations.

Having determined the potentials and densities, we now present and
discuss elements of the mic–mac approach, particularly, with the Wigner–
Kirkwood semi-classical expansion.



702 X. Viñas et al.

0 30 60 90 120 150 180 210 240 270

Mass Number

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

δ
R

1
/2

 (
N

e
u

tr
o

n
) 

(f
m

)

rms Deviation = 0.02 fm

0 30 60 90 120 150 180 210 240 270

Mass Number

-0.06

-0.03

0.00

0.03

0.06

δ
a

n
 (

fm
)

rms Deviation = 0.01 fm

Fig. 1. Difference between exact and fitted values of half density radius and diffu-
sivity for neutronic mean field.

2.2. Mic–mac model with Wigner–Kirkwood expansion

The starting point for the WK expansion is the quantal partition func-
tion,

Z (β) = Tr
(

exp
(
−βĤ

))
, (5)

where Ĥ is the Hamiltonian of the system [11, 12]. The WK semi-classical
expansion amounts to an expansion of the partition function in the powers
of Planck’s constant ~, that yields systematic corrections to the Thomas–
Fermi energy and particle number [6–8, 10]. Here, we expand the partition
function up to the fourth order in ~. The level density, energy and particle
number can be obtained through suitable Laplace inversions of the partition
function. The details of this procedure and the corresponding formulas for
various quantities can be found in Refs. [11, 12].

The Wigner–Kirkwood averaged energy along with the quantal energy
yield the shell corrections. The shell corrections, along with pairing energies
define fully the ‘mic’ energy (δE) of the mic–mac model, in which, the
total ground state energy of a system of N neutrons and Z protons can be
expressed as E(N,Z) = Emac + δE.

The ‘mac’ part of the energy is determined using the liquid drop model.
Here, we use [11–13]

Emac = av

[
1 +

4kv
A2

Tz (Tz + 1)

]
A+ as

[
1 +

4ks
A2

Tz (Tz + 1)

]
A2/3

+acur

[
1 +

4kcur
A2

Tz (Tz + 1)

]
A1/3 +

3Z2e2

5r0A1/3
+
C4Z

2

A
+ EW , (6)
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where, av, as, acur, kv, ks, kcur, r0 and C4 are free parameters, Tz is the third
component of isospin, e is electronic charge and EW is the Wigner energy,
given by

EW = w1 exp

{
−w2

∣∣∣∣N − ZA

∣∣∣∣}Θ (20− Z) Θ (40−A) (7)

with w1, w2 as free parameters. Most of the nuclei considered in the investi-
gation are deformed. The liquid drop quantities defined above, in particular,
surface, curvature and Coulomb energies, therefore become deformation de-
pendent. Details can be found in [12].

3. Results and discussions

For the mic–mac study, we consider the same set of 561 even–even nuclei
as we had considered in Ref. [12]. The calculations proceed in two steps. In
the first step, the Wigner–Kirkwood calculations are carried out using the
mean fields, spin-orbit potentials and densities obtained from ETF–Gogny
calculations. The shell corrections are deduced from these and the single-
particle spectrum obtained by diagonalisation of the Hamiltonian. The
pairing energies are then obtained within the well-known Lipkin–Nogami
scheme. The two together define the ‘mic’ part of the binding energy. In the
next step, the liquid drop parameters are fitted by demanding that the liquid
drop part of the binding energy must coincide with the difference between the
experimental binding energy and the ‘mic’ part of the binding energy. The
deformation parameters have been assumed to be the same as those reported
in Ref. [12]. The fit turns out to be a reasonable one, with r.m.s. deviation of
953 keV. The resulting liquid drop parameters are: av = −15.871(−15.435),
kv = −1.827(−1.874), as = 20.203(16.673), ks = −2.060(−2.430), r0 =
1.195(1.219), C4 = 1.329(0.963), acur = −3.767(3.161), w1 = −1.632(−2.762)
and w2 = 13.444(3.725). The values presented in parentheses are those re-
ported in Ref. [12]. It is clear that the volume and Coulomb terms obtained
in the present calculation are similar to those reported in Ref. [12]. How-
ever, it is seen that the terms linked with structure of the surface are strongly
affected.

The differences between the calculated and the experimental [14] binding
energies for the chains of Fe, Sn, W and Pb isotopes have been presented
in Fig. 2. The calculated binding energies are found to be in a reasonably
good agreement with the experiment. Notice that near the shell closure, our
calculations tend to deviate strongly from the experiment, and elsewhere
the agreement is more reasonable. This behaviour is peculiar and needs to
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be investigated further. As the first step, we compare our calculations with
the results quoted at [15], particularly for Pb isotopes. The comparison is
tabulated in Table I.
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Fig. 2. Difference between calculated and the experimental [14] binding energies
for chains of Fe, Sn, W and Pb isotopes.

TABLE I

Binding energies for Pb isotopes. Those reported at [15] and the experimental
values are also quoted for comparison.

A Present Ref. [15] Expt. A Present Ref. [15] Expt.

178 −1367.16 −1368.43 −1368.52 198 −1560.01 −1559.48 −1557.78
180 −1389.10 −1390.08 −1389.32 200 −1575.20 −1575.81 −1574.52
182 −1410.44 −1411.11 −1409.57 202 −1589.91 −1591.65 −1590.88
184 −1431.19 −1431.47 −1429.32 204 −1604.14 −1606.96 −1606.88
186 −1451.38 −1451.25 −1448.59 206 −1617.85 −1621.78 −1622.38
188 −1470.98 −1470.53 −1467.42 208 −1630.64 −1635.89 −1637.27
190 −1490.10 −1489.27 −1485.85 210 −1641.34 −1645.01 −1651.65
194 −1526.76 −1525.35 −1521.85 214 −1660.95 −1662.75 −1658.39
196 −1544.05 −1542.64 −1540.72
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It is seen that the HFB–Gogny results [15] for Pb exhibit a systematic
behaviour with respect to the present calculations. In particular, for neutron
deficient Pb isotopes, both agree well with the experiment. With increasing
neutron number, the two deviate from each other. The WK results remain
close to the experiment, but the HFB–Gogny results deviate strongly from it.
As the shell closure approaches, the WK calculations start deviating from
experiment, whereas the HFB–Gogny results go on improving. Away from
the shell closure, the WK calculations again improve, whereas the HFB–
Gogny starts deviating from experiment (214Pb). It is to be noted that the
shell closure and spin-orbit interaction are closely related, hinting towards a
possible requirement of improvement in the spin-orbit potential as deduced
from the ETF–Gogny. If this is so, it should manifest in shell corrections. It
is well-known that the shell corrections have a dominant contribution from
the spin-orbit potential [11, 12]. In particular, the fourth order spin-orbit
contribution is found to be most significant. With this motivation, we plot
in Fig. (3) a comparison between the shell corrections obtained in this work
and those reported in Refs. [11,12]. The present shell corrections are indeed
found to differ in structure from the ones reported in Refs. [11, 12]. In
particular, deviations near the shell closure are striking, hinting towards the
possibility of necessary improvements in the spin-orbit sector, as deduced
earlier.
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Fig. 3. Comparison between shell corrections for Pb isotopes.

4. Summary and conclusions

In summary, the mic–mac calculations with the ETF–Gogny inspired
potentials are found to yield a reasonably good description of ground state
binding energies for the nuclei spanning the entire periodic table. The results
are somewhat similar to HFB–Gogny calculations, but systematic differences
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between the two have been observed. The present calculations tend to per-
form well in the regions away from shell closures, whereas the HFB–Gogny
results are found to be better near the shell closures. It has been conjectured
that the spin-orbit potential may be responsible for this behaviour. Further
investigations along these lines are in progress.
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