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The old problem of whether the coefficients of the leptodermous ex-
pansion of the finite nucleus incompressibility (Blaizot’s formula) can be
fitted using the available experimental data of giant monopole resonances
is revisited. Using a mean field model (NL3) as a benchmark, we compute
the finite nucleus incompressibility of a large set of nuclei in the scaling
approach. These values are fitted to Blaizot’s formula and a covariance
matrix analysis is performed. From this study, it is seen that some of the
fitted coefficients of the leptodermous expansion are strongly contaminated
by the neglected terms and differ considerably from the original coefficients
which can be directly computed for the given mean field model. As a
consequence, it does not seem possible to use the coefficients of Blaizot’s
formula fitted to experimental information on giant monopole resonances
to accurately constrain mean field models available in the literature.
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1. Introduction

A simple way to estimate the excitation energy of the isoscalar Giant
Monopole Resonance (GMR) in finite nuclei is provided by the so-called
Blaizot model [1, 2], where the finite nucleus incompressibility KA can be
written as a leptodermous expansion

KA = Kvol +KsurfA
−1/3 +KτI

2 +KCoulZ
2A−4/3 + . . . , (1)
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from where the energy of the ISGMR is estimated as

EGMR =
√
~2KA/(M〈r2〉), (2)

where 〈r2〉 is the r.m.s. radius of the nucleus and M the nucleon mass.
Several works, see e.g. Refs. [4, 5], have studied the problem of the ex-

traction of the different coefficients in Blaizot’s formula for the finite nucleus
incompressibility from experimental data on the GMR. Using data consistent
with the scaling approach, Ref. [5] performed a fit to obtain the bulk incom-
pressibility Kvol, which is identified with the incompressibility of infinite
symmetric nuclear matter (K∞), the bulk symmetry incompressibility Kτ ,
and the ratio of the surface and volume terms c = Ksurf/Kvol. An impor-
tant question that arises is whether the fitted coefficients may or may not
be used to constrain mean field models, as e.g. in the analysis of Skyrme
forces [6] and Relativistic Mean Field (RMF) models [7]. It is to be men-
tioned that the fit of Blaizot’s formula to experimental data on the GMR
has been contested by several authors [8–10], who pointed out that the ex-
tracted coefficients could not be obtained with enough accuracy, invalidating
a direct comparison with the same coefficients predicted by a given mean
field model.

Here, we reanalyze this problem from a different point of view. First, we
generate the theoretical finite nucleus incompressibility KA of a large set of
nuclei with the scaling method using the Extended Thomas–Fermi (ETF)
approximation to the RMF model [12] for the NL3 parameter set [13]. The
semiclassical treatment of the breathing mode is in a good agreement with
the excitation energies of the GMR obtained using the relativistic Random
Phase Approximation (RPA) with the same RMF model, pointing out that
this semiclassical approach can be used confidently to estimate KA [12].
Second, through calculations in infinite and semi-infinite nuclear matter,
we compute the coefficients Kvol, Ksurf , Kτ and KCoul of the leptodermous
expansion of KA with the same NL3 parameter set. Note that Kvol, Kτ and
KCoul are easily evaluated in nuclear matter [14]. To compute Ksurf requires
a scaling calculation in semi-infinite nuclear matter [1]. We perform this
calculation fully consistently with the method used to obtain KA in finite
nuclei, i.e., in the ETF approach to RMF [3]. Third, we recalculate the
coefficients of the expansion of KA for NL3 by performing a fit of (1) in
the same conditions as in Ref. [5], but using as pseudo-data the theoretical
KA values that we have computed in finite nuclei. Finally, we compare the
values of the coefficients obtained in the fit with the original values derived
for NL3.
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2. Basic theory

The volume Kvol, Kτ and KCoul coefficients in Blaizot’s formula (1)
are expressed within the scaling approach in terms of some parameters of
the liquid droplet model [15] and can be computed using nuclear matter
properties only [1]. They read Kvol = K∞ and

Kτ = Ksym + L

(
K ′

Kvol
− 6

)
, KCoul =

3e2

5r0

(
K ′

Kvol
− 8

)
, (3)

where L, K ′ and Ksym are defined from the expansion of the energy per
particle in asymmetric nuclear matter around saturation [15]. The numerical
values of Kvol, Kτ and KCoul of the NL3 mean field model can be found e.g.
in Ref. [14]. The surface coefficient can be written as [1, 16]

Ksurf = 4πr20

[(
22− 2

K ′

Kvol

)
σ(ρ0) + 9ρ20σ̈(ρ0)

]
, (4)

where the surface tension and its second derivative with respect to the central
density ρc evaluated at saturation density are given in the scaling method
by [3,14]

σ(ρc) =

+∞∫
−∞

[H − e∞(ρc)ρ] dz , σ̈(ρ0) =
d2σ(ρc)

dρ2c

∣∣∣∣
ρ0

=
1

9ρ20

d2σ

dλ2

∣∣∣∣
λ=1

.

(5)
A detailed description of these expressions and of the ETF-RMF semi-
infinite nuclear matter calculations can be found in Ref. [3]. We report the
values of the coefficients Kvol, Ksurf , KCoul and Kτ for the RMF parameter
set NL3 in Table I.

TABLE I

Volume, surface, Coulomb and volume-symmetry incompressibility coefficients
computed with the RMF parameter set NL3.

Kvol Ksurf Ksurf/Kvol KCoul Kτ

271.5 −313.7 −1.14 −6.45 −698.9

3. Results

We have computed the finite nucleus incompressibility KA of 750 nuclei
from oxygen to uranium in the ETF-RMF approach with the NL3 parameter
set (the calculation of the excitation energy of the GMR and KA of finite
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nuclei in the ETF-RMF formalism is described in detail in Refs. [11, 12]).
These KA values can be used as a benchmark (pseudo-data) for fitting the
parameters of Eq. (1). The extracted coefficients can then be checked against
the NL3 original values reported in Table I.

First, we fit the coefficients Kvol, Kτ and the ratio Ksurf/Kvol and fix
KCoul = −5.2 MeV as was done in Ref. [5]. The values of the coefficients
from this fit are displayed in the first line of Table II. The associated covari-
ance matrix is shown at the bottom left of the table. The rows (from the
left to the right) and the columns (from the top to the bottom) of this ma-
trix correspond to the correlations among the parameters Kvol, Ksurf/Kvol

and Kτ , respectively. We have performed the fits with the MINUIT soft-
ware which provides the uncertainties of the fitted parameters as well as
the covariance matrix. We have performed a χ2 test with an adopted error
for our benchmark KA of 1 MeV. We see in Table II that the fitted coeffi-
cients have relatively large error bars and do not reproduce within the error
band the NL3 values of Table I. The covariance matrix shows that the fitted
value of Kvol is strongly correlated with the ratio Ksurf/Kvol and less cor-
related with Kτ . Next, to test the influence of the number of data points,
we repeat the fit using a reduced set of only 18 pseudo-data correspond-
ing to the nuclei where the excitation energy of the GMR is experimentally
known [5]. The new results are displayed in the second line of Table II and
the corresponding covariance matrix is shown at the bottom right of the
table. The fitted parameters are compatible with the results of the previous
fit to a larger number of data points. The covariance matrix, again, points
out strong correlations among the parameters. We have verified that setting
KCoul = −6.45 MeV, as predicted by NL3, instead of KCoul = −5.2 MeV
does not change the global conclusions of our analysis.

TABLE II

Fit of Kvol, Ksurf/Kvol and Kτ , with KCoul = −5.2 MeV, to KA of 750 nuclei in
the first line and of 18 nuclei in the second line. See the text for details.

Kvol Ksurf/Kvol Kτ χ2 r.m.s.

258± 7 −1.26± 0.09 −305± 50 0.4 0.7

265± 16 −1.34± 0.21 −328± 131 0.24 0.43 1.000 −0.940 −0.468
−0.940 1.000 0.202
−0.468 0.202 1.000

  1.000 −0.985 −0.863
−0.985 1.000 0.779
−0.863 0.779 1.000


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Following a strategy suggested in [5, 8], we repeat the fit but fixing the
ratio Ksurf/Kvol which, in turn, is gradually varied between −1.0 and −1.8.
Again, we use 18 data points and KCoul = −5.2 MeV. The results of this new
fit are reported in Table III. We see that the optimal χ2 value corresponds
to a ratio Ksurf/Kvol = −1.4 and that Kvol and Kτ are compatible with
the results obtained from the fits with the three free parameters (Table II),
but, again, do not reproduce the NL3 values shown in Table I. From the
covariance matrix, we can see that in this case these two parameters are
strongly correlated between them.

TABLE III

Fit of Kvol and Kτ for different values of Ksurf/Kvol with KCoul = −5.2 MeV and
using 18 nuclei.

Ksurf/Kvol Kvol Kτ χ2

−1.0 243± 2 −117± 83 5.36
−1.1 251± 3 −171± 84 3.31
−1.2 259± 3 −229± 84 1.68
−1.3 269± 3 −290± 85 0.57
−1.4 279± 3 −356± 86 0.10
−1.5 289± 3 −425± 86 0.45
−1.6 301± 3 −500± 87 1.81
−1.7 313± 3 −579± 88 4.43
−1.8 326± 3 −664± 88 8.63(

1.000 −0.900
−0.900 1.000

)

The discrepancy between the coefficients Kvol, Ksurf and Kτ obtained
in the fit and those derived from the leptodermous expansion should be
attributed to the fact that the fitted values include in an effective, but un-
controlled, way effects from higher-order contributions to Eq. (1) neglected
in the fit. However, the inclusion of higher-order terms, such as surface-
symmetry and/or curvature corrections, does not necessarily solve the prob-
lem. Although the additional terms may improve the quality of the fit, they
can induce large changes in the other parameters pointing out uncontrolled
correlations and that the fit may have converged to a local minimum. When
the latter occurs, the confidence intervals and the standard deviations pre-
dicted for all or some of the parameters of the new fit may become large (see
in this respect, for instance, Table I of Ref. [17]).
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The fact that the fit effectively takes into account higher-order terms can
also be seen in Table IV. In the fifth column, we display KA predicted by
the truncated leptodermous expansion using the coefficients given in Table I.
These predictions are not very accurate and may differ from the selfconsis-
tent KA data (third column) up to 10 MeV in some cases. As expected, the
fit (fourth column) reproduces much more accurately the data, indicating
the effective character of the parameters. The lack of accuracy in the predic-
tions using the truncated expansion with the coefficients of Table I suggests
that curvature (KcurvA

−2/3) and surface-symmetry (Kτ,surfI
2A−2/3) terms

of the KA expansion may have a non-negligible role. These parameters have
been estimated in Ref. [3] in the ETF approach, without fitting to finite nu-
clei, to be Kcurv = −229.8 MeV and Kτ,surf = 1754 MeV for NL3. If they are
added to Blaizot’s formula (1), the agreement with the self-consistent KA

data improves considerably (cf. the rightmost column of Table IV). However,
the result still differs from the KA data. This implies that more terms in
the expansion would be eventually needed.

TABLE IV

Self-consistent finite nucleus incompressibility KA in the ETF-RMF approach with
NL3 and different approximations to it, for the 18 nuclei for which the GMR is
experimentally known. See the text for details.

A Z KA[Data] KA[Fit] KA[Lepto] KA[Lepto*]

112 50 163.8243 164.0125 168.5296 162.8166
114 50 163.6577 163.9035 167.0916 162.7730
116 50 163.3574 163.6340 165.3782 162.5590
118 50 163.9277 163.2204 163.4197 162.1888
120 50 162.4116 162.6776 161.2434 161.6757
122 50 161.7905 162.0190 158.8736 161.0317
124 50 161.0854 161.2567 156.3325 160.2677
106 48 163.5288 163.6747 169.3719 162.4104
110 48 163.2594 163.5168 166.5119 162.4320
112 48 162.9075 163.1756 164.6311 162.1670
114 48 162.4317 162.6842 162.4951 161.7393
116 48 161.8460 162.0588 160.1386 161.1631
208 82 161.1026 161.9540 152.0887 158.7898
144 62 164.4524 164.7625 165.3193 163.4108
148 62 163.7110 164.1241 162.1450 162.6517
56 26 154.1632 154.7379 165.5884 152.2278
58 28 154.7513 155.1457 167.1043 152.3064
60 28 155.6126 156.1161 166.7352 153.7325
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4. Conclusions

The analysis performed in this contribution emphasizes that if the coef-
ficients of Blaizot’s formula for the finite nucleus incompressibility are fitted
to the existing data of the GMR, their values are, actually, effective as far as
they contain higher-order contributions in a rather uncontrolled way. There-
fore, the fitted coefficients, excepting maybe Kvol, are not able to reproduce
the corresponding leptodermous value very accurately. Consequently, it does
not seem evident that they may be used as constraints to rule out several of
the existing mean field models that, on the other hand, predict other impor-
tant properties of finite nuclei, such as binding energies and charge radii in
a reasonable good agreement with the experimental data. It is to be noted
that the conclusions of our analysis have been derived using a single mean
field model (NL3), but we think that they are sufficiently general although
the numerical details may be different if a similar study is carried out using
another mean field model.

M.C. and X.V. acknowledge support from grants FIS2014-54672-P of
MINECO and FEDER and 2014SGR-401 of Generalitat de Catalunya, the
Consolider-Ingenio Programme CPAN CSD2007-00042 and project MDM-
2014-0369 of ICCUB (Unidad de Excelencia María de Maeztu, MINECO).
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