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Based on the Woods–Saxon potential, we have developed a configura-
tion-constrained potential energy surface calculation. This method has
been successfully applied to the calculations of various multi-quasiparticle
high-K states in different mass regions, well reproducing the experimen-
tal excitation energies and other observations. Further, we have developed
the configuration-constrained total Routhian surface calculation for the ro-
tations of the multi-quasiparticle high-K states. The pairing calculation
is improved by a particle-number-conserving pairing method which always
gives converged solutions for the cranking Hartree–Fock pairing calcula-
tions. In this paper, we focus on the predictions of possible octupole de-
formed high-K states in the actinide mass region. Using the developed
configuration-constrained total Routhian surface method, we have investi-
gated high-K rotations for nuclei around Z = 100 and 102 with N ≈ 150.
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1. Introduction
Atomic nuclei can be excited by breaking paired nucleons [1–4]. If the

unpaired nucleons couple to a configuration with a high angular momentum
(in fact, an angular momentum projection onto the symmetry axis of a
deformed nucleus, named K), the excited state can be an isomer due to the
forbiddenness of electromagnetic decays from high-K to low-K states [1, 2].
An abundance of high-K isomers have been observed in the whole chart of
nuclides [1,2] including superheavy (see Ref. [5] and references therein) and
nuclei near drip lines [6, 7].
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Theoretically, previous calculations were usually done with the assump-
tion that an isomer has the same deformation as the ground state of the
nucleus (see, e.g., [8]). However, high-Ω orbits (Ω is the nucleon angular
momentum projection onto the symmetry axis of the deformed nucleus) usu-
ally have a strong deformation-driving force, which would make the isomer
shape deviate from that of the ground state. Particularly for soft nuclei,
the deformation change can be remarkable due to the broken-pair excita-
tions [9–13]. The multi-quasiparticle excitations even lead to the emergence
of new deformation degrees of freedom [14]. The deformation evolution can
also occur due to collective rotations of nuclear states [3, 10, 15], and the
broken-pair multi-quasiparticle high-K states can have collective rotations.
The rotational bands built on multi-quasiparticle configurations are called
sidebands (relative to the ground-state band), providing rich information for
nuclear structure studies. Theoretically, the calculations of sidebands are
difficult due to the non-convergence problem in the cranking Hartree–Fock–
Bogoliubov (HFB) calculation. In this paper, we discuss multi-quasiparticle
high-K states and their collective rotations.

2. Model

The deformed Woods–Saxon (WS) potential with the universal param-
eters [16] gives an excellent single-particle level spacing that is crucial for
quantitative calculations of excitation energies of broken-pair multi-quasi-
particle high-K states. The pairing is another crucial factor for the energy
calculations. In the present calculations, only the monopole pairing is con-
sidered. It was found that quadrupole pairings [17] have only a small effect
on the excitation energy calculations of multi-quasiparticle states [18]. The
BCS pairing provides a simple and efficient model for non-rotational cal-
culations. In the present calculations, in order to avoid the spurious phase
transition encountered in the BCS approach, we used the approximate parti-
cle number projection by means of the Lipkin–Nogami (LN) pairing method.
In the macroscopic–microscopic model, the total energy of a state contains
a macroscopic part that is calculated by the liquid drop model and a mi-
croscopic part that can be obtained by the Strutinsky shell correction. The
configuration energy in the LN approach can be written as [3]

ELN =

S∑
j=1

ekj +
∑
k 6=kj

2V 2
k ek −

∆2

G
−G

∑
k 6=kj

V 4
k
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− 4λ2
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where S is the seniority of the given type of nucleon, i.e., the number of
unpaired protons or neutrons (indicated by kj), and N is the number of
protons or neutrons. Adiabatic blockings are achieved by tracking the spe-
cific single-particle orbits using calculated average Nilsson numbers which
evolve smoothly with changing deformation [3]. In the non-axial deformed
Woods–Saxon potential, the Nilsson numbers Ω[N,nz, Λ] of single-particle
orbits are no longer good quantum numbers, but we can calculate their
expectation (averaged) values by using single-particle wavefunctions. The
expectation values are approximately good quantum numbers when defor-
mations are nearly prolate or oblate.

The PES is calculated usually with deformations (β2, γ, β4). The total
energy of a state is obtained by minimizing the calculated PES. The excita-
tion energy of the state is given by the total energy difference between the
excited and ground states. In many cases, high-K states have axial deformed
shapes (prolate or oblate [19]). An axially-symmetric shape leads to a con-
served K value. In some cases (particularly in heavy mass regions), however,
higher-order deformations may need to be considered, e.g., β6 and β8, or
reflection-asymmetric octupole deformation β3 [14, 20, 21]. The γ deforma-
tion can also play an important role in the description of nuclear collective ro-
tation [17,22,23] and high-K excitations [24–28]. The γ deformation results
in K mixing [29–31]. The pairing strength is readjusted by including mean-
field and blocking effects [32]. In the usual BCS pairing, the pairing gap is
assumed to be equal to the experimental odd–even mass difference, which is
used to determine the pairing strength. But in Refs. [32,33], it was pointed
out that the three-point or four-point (even five-point) odd–even mass dif-
ference formula cannot fully cancel effects from the mean field itself and the
odd-nucleon blocking. The twofold degeneracy of single-particle levels can
lead to a contribution to the odd–even mass difference [33]. The neighbour-
ing nuclei involved in the odd–even mass difference calculation may have
different deformations, which can affect the odd–even difference [32]. In the
present readjustment, we use a five-point odd–even mass difference formula
to calculate a theoretical odd–even mass difference, and adjust the pairing
strength to reproduce the experimental odd–even mass difference [32]. The
readjustment is crucial for the calculations of excitation energies.

The multi-quasiparticle high-K states can undergo collective rotations.
For collective rotational calculations, the total Routhian surface (TRS)
method has been very successful. The shape evolution with increasing rota-
tional frequency can be obtained by minimizing the calculated TRS. How-
ever, for broken-pair multi-quasiparticle states, the cranking Hartree–Fock–
Bogoliubov (HFB) approach which was used in the conventional TRS calcu-
lation encounters a non-convergence problem [34, 35]. In order to overcome
the problem, we have developed the total Routhian surface method by in-
corporating the particle-number-conserving (PNC) pairing method [36].



718 F.R. Xu et al.

The total Routhian can be written as [37]

Eω
(
Z,N, β̂

)
= Eω=0

(
Z,N, β̂

)
+
[〈
Ĥω

(
Z,N, β̂

)〉
−
〈
Ĥω=0

(
Z,N, β̂

)〉]
. (2)

The notations are standard, see Ref. [37] for details. The cranked shell-model
Hamiltonian is written as [34–36]

HCSM = HSP − ωJx +HP , (3)

where HSP =
∑

ξ hξ with hξ being the single-particle Hamiltonian with a
one-body potential. −ωJx = −ω

∑
jx is the Coriolis energy (jx for the

single-particle spin projection onto the x axis, perpendicular to the symme-
try axis), and HP is the residual two-body pairing interaction,

HP = −G
∑
ξη

a†ξa
†
ξ̄
aη̄aη , (4)

where ξ (ξ̄) and η (η̄) index the (time-reversed) eigenstates of the single-
particle Hamiltonian, hξ. In the rotational case, the time-reversed symmetry
is broken, while the signature α, defined by Rx(π)|ξα〉 = e−iπα|ξα〉, remains
a good quantum number. One can transform the time-reversed representa-
tion into the signature basis by [34–36]

β†ξα=±1/2 =
1√
2

{
a†ξ ± πa

†
−ξ

}
, (5)

where a†−ξ = (−1)Ω−1/2a†
ξ̄
with Ω being the single-particle spin projection

onto the symmetry axis. The parity π stays conserved. Then, we have

HP = −G
∑
ξη

(−1)Ωξ−Ωηβ†ξ+β
†
ξ−βη−βη+ , (6)

where ξ+ (ξ−) indicates the eigenstate ξ with positive (negative) signa-
ture [34–36].

The eigenstates |µα〉 of the cranked single-particle Hamiltonian, hξ−ωjx,
can be expressed as

|µα〉 =
∑
ξ

cµξ(α)|ξα〉 [cµξ(α) is real] , (7)

where |ξα〉 stands for the eigenstates of the non-cranked single-particle
Hamiltonian, hξ, while the signature α is conserved. The coefficients cµξ(α)
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are determined in the diagonalization of the hξ − ωjx Hamiltonian in the
signature basis of the hξ Hamiltonian. Correspondingly, a cranked many-
particle configuration of the n-body system can be written as a product
form

|µ1µ2 · · ·µn〉 = b†µ1b
†
µ2 · · · b

†
µn |0〉 , (8)

where b†µi is the creation operator for a cranked single-particle state |µiα〉.
(In fact the eigen state |µα〉 contains other quantum numbers, e.g., eigen
energy εµα and parity π, but it is sometimes denoted by µ for simplification
hereafter.) According to Eq. (7), we have

b†µ± =
∑
ξ

cµξ(±)β†ξ± , (9)

where the sign ± indicates positive or negative signature. In the cranked
basis, therefore, the residual two-body paring interaction can be written
as [36]

HP = −G
∑
µµ′νν′

f∗µµ′fνν′b
†
µ+b
†
µ′−bν−bν′+ , (10)

with

f∗µµ′ =
∑
ξξ′

eiπΩξcµξ(+)cµ′ξ′(−) , (11)

fνν′ =
∑
ηη′

e−iπΩηcνη(+)cν′η′(−) . (12)

The eigenstate of HCSM can be written as [34–36]∣∣ψω
CSM

〉
=
∑
i

Ci|i〉 , (13)

with {|i〉; i = 1, 2, · · ·} = {|µ1µ2 · · ·µn〉; scanning}, taking all possible con-
figurations in the truncated CMPC space. For more details, see Refs. [34–36].

The total cranked shell-model Hamiltonian, HCSM, is diagonalized in a
cranked many-particle configuration (CMPC) model space, i.e., one chooses
the eigenstates of the no-pairing cranked deformed Hamiltonian as basis
functions for the diagonalization of the total cranked Hamiltonian, HCSM

[36]. The cranked deformed basis provides a small but efficient model space
for the PNC pairing calculations [34,35].

The angular momentum of the rotational state |ψω
CSM
〉 is calculated by [36]

〈ψωCSM| Jx |ψωCSM〉 =
∑
i

C2
i 〈i|Jx|i〉+ 2

∑
i<j

CiCj〈i|Jx|j〉 . (14)
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The TRS is calculated in a lattice of deformations (β2, γ, β4). The γ de-
formation can play an important role in the description of nuclear collec-
tive rotation [17, 22, 23] and high-K excitations [24–28], leading to K mix-
ing [29–31]. The configuration-constrained calculation is achieved by iden-
tifying and tracking the given single-particle orbits using calculated average
Nilsson numbers. The specific orbits define the multi-quasiparticle high-K
configuration.

In this paper, we have introduced two different models. The configura-
tion-constrained PES model with the Lipkin–Nogami pairing is only for the
calculations of multi-quasiparticle states without collective rotations, i.e.,
the bandheads of their rotational bands. The configuration-constrained
TRS with the PNC pairing is for the collective rotational calculations of
the excited configurations. Of course, the TRS method is also valid for the
bandhead calculations. In the two models, the one-body Hamiltonian HSP

takes the same form, with the universal Woods–Saxon parameters [16]. The
residual two-body pairing interactionHP is also identical. However, the pair-
ing strengths are different. The pairing strength is dependent on both the
model itself and the model space. Nevertheless, it is required to reproduce
the experimental odd–even mass difference. For the nuclei investigated in
the present paper, we took an equal number of about 40 single-particle lev-
els above and below the Fermi surface for the Lipkin–Nogami pairing. The
pairing strength is obtained by the averaged gap method [38]. In the PNC
calculations, the model dimension taken for the Hamiltonian diagonalization
is about 1000. It has been well tested that such a dimension is sufficient for
converged solutions, see Refs. [34,35] for details. The PNC pairing strength is
determined also by fitting the experimental odd–even mass difference [34,35].
The resulting pairing energies are similar for the Lipkin–Nogami and PNC
calculations. For example, in the 178W Kπ = 7−, ν7/2+[633] ⊗ ν7/2−[514]
state (at ~ω = 0.0 MeV), the calculated pairing energy is −1.9 MeV in the
Lipkin–Nogami calculation, compared with −2.5 MeV with PNC [34].

3. Calculations

We have investigated multi-quasiparticle high-K states in different mass
regions. The PES calculations can give excitation energies, deformations,
g-factors, and softness as well. Figure 1 displays the calculated configuration-
constrained PESs for the for the prolate Kπ = 6− (ν{7/2[633], 5/2[512]})
and the oblate Kπ = 11− (π{13/2[606], 9/2[505]}) states in 186Pb. We see
that the Kπ = 6− isomer has a soft prolate shape, while the Kπ = 11−

isomer has a oblate shape, making shape coexistence in this nucleus [39].



Multi-quasiparticle High-K States and Their Rotations 721

0.16 0.20 0.24 0.28

X = β
2
cos(γ+30°)

0.08

0.12

0.16

Y
 =

 β
2
s
in

(γ
+

3
0

°)

 (a)

0.12 0.16 0.20

–0.12

–0.08

–0.04

 (b)

Fig. 1. Configuration-constrained PESs for the prolate Kπ = 6−(ν{7/2[633],

5/2[512]}) state (a) and the oblate Kπ = 11−(π{13/2[606], 9/2[505]}) state (b) in
186Pb. The energy difference between neighboring contours is 100 keV. The intrin-
sic PESs are reflection-symmetric about γ = 0◦; that is, the shape with γ = −60◦

is the same as the one with γ = 60◦ for non-collective excitations.

We have searched for possible octupole deformed high-K states in the
actinide region. The calculations were performed in multi-dimensional defor-
mation space (β2, β3, β4, β5) [14]. Figure 2 plots the calculated configuration-
constrained PESs for two-quasiparticle Kπ = 6− states in 232Th, 234U and
236Pu, showing octupole deformations or octupole softness. Experiments
have observed a Kπ = 6− isomer at an excitation energy of 1.42 MeV with
T1/2 = 33.5 µs in 234U [40]. The experimental energy is reproduced by the
present calculation giving Ex = 1.26 MeV.
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Fig. 2. Calculated PESs ofKπ = 6−(ν{5/2+[633]⊗7−/2[743]}) states for (a) 232Th,
(b) 234U, and (c) 236Pu. At each (β2, β3) deformation point, the energy has been
minimized with respect to β4 and β5 deformations. The energy interval between
neighboring contours is 100 keV. The PES is symmetric with respect to β3 = 0.

Using the configuration-constrained cranking TRS method [34, 35], we
have investigated the collective rotations of multi-quasiparticle high-K states.
Figure 3 shows the calculated kinematic moments of inertia and excitation
energies of the rotational bands of several low-lying two-quasiparticle high-K
configurations in 252No. In this nucleus, the rotational band built on the
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1254 keV isomer has been observed recently with the assigned Kπ = 8− con-
figuration [41]. It is seen that the present calculations with both Kπ = 8−,
9
2

−
[734]⊗ 7

2

+
[624] and Kπ = 7−, 9

2

−
[734]⊗ 5

2

+
[622] two-neutron configura-

tions give reasonable agreements with the experimental data. This provides
useful information for experimental analyses. In the superheavy mass re-
gion, there have been many multi-quasiparticle high-K isomers observed
experimentally [42–44].
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Fig. 3. (Color on-line) Calculated and experimental kinematic MoIs (a) and exci-
tation energies (b) for the rotational band built on the 1254 keV isomer in 252No.
The excitation energies of the two-quasiparticle rotational bands were obtained
by calculating their configuration-constrained TRSs. The experimental data are
taken from Ref. [41]. The configurations are 2ν1: ν{ 92

−
[734] ⊗ 7

2

+
[624]}, 2ν2:
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2
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4. Summary

We have developed the configuration-constrained potential-energy sur-
face calculation for multi-quasiparticle high-K states. An abundance of
multi-quasiparticle high-K isomeric states in different mass regions have
been investigated. The present calculations can well describe experimental
excitation energies and deformations of high-K states. Further, we have
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developed the configuration-constrained TRS calculation in which the par-
ing correlation is treated by the particle-number-conserving method. As
an example, we have shown configuration-constrained TRS calculations for
the collective rotations of several two-quasiparticle high-K isomers in 252No.
The calculations are compared with available data, giving a good agreement
between the calculations and data.
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