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1. Introduction

The description of hadronic elastic scattering in terms of fundamentals
of QCD remains an open problem. It involves non-perturbative aspects
of strong interactions and may lead to a deeper comprehension of QCD
interactions and hadronic structure. In the absence of theoretical solutions
for the non-linear dynamics, the treatment depends on models. The interest
in this problem is renewed due to the high-energy data from TOTEM [1]
and ATLAS [2] experiments at the LHC.

The description of the pp (or pp̄) cross section in a complete t-range
depends on the interplay of the imaginary and real parts of the scattering
amplitudes. In the present work, the attention is given to models where the
description of the pp high-energy scattering through amplitudes is explicit.
We concentrate on three models of this kind.

In Sections 2, 3 and 4, three models, here called KFK, BSW and HEGS,
are summarized. In Section 5, we compare some of their features and present
some comments.

2. KFK model

The KFK (short for Kohara–Ferreira–Kodama) model, inspired by the
Stochastic Vacuum Model [3], has been successfully applied to dσ/dt data
from

√
s ∼ 20 GeV to 7 TeV [4,5].
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The amplitudes TK(s, t) are built based on the profile functions in the
impact parameter representation

T̃K(s, b) =
αK(s)

2βK(s)
e−b

2/4βK(s) + λK(s) ψ̃(s, b) (1)

with the characteristic shape function

ψ̃K(s, b) =
2 eγK(s)−

√
γK(s)+b2/a0

a0
√
γK(s) + b2/a0

[
1− eγK(s)−

√
γK(s)+b2/a0

]
, (2)

where K = R, I labels the real and the imaginary parts of the amplitude;
a0 = 1.39 GeV−2 is related to the gluon correlation length of the correlation
function. The Fourier transform of Eq. (1) determines the real and imaginary
scattering amplitude in t-space

TK(s, t) =
1

2π

∞∫
0

d2~b e−i~q·
~b T̃K(s, b) (3)

with t = −~q 2. A characteristic feature of this model is that the amplitudes
in both b- and t-space have simple analytical forms, mathematically related.
The real and imaginary amplitude in t-space are written

TK(s, t) = αK(s) e−βK |t| + λK(s)ΨK(γK(s), t) + δK,RRggg(t) . (4)

We have now added the term Rggg(t) that represents the contribution from
the perturbative three-gluon exchange and is responsible for the observed
|t|−8 tail behaviour [6] in dσ/dt. The shape functions in t-space are

ΨK(γK(s), t) = 2eγK

[
e−γK

√
1+a0|t|√

1 + a0|t|
− eγK e

−γK
√

4+a0|t|√
4 + a0|t|

]
. (5)

The KFK model uses four energy-dependent parameters for each am-
plitude, αK(s), βK(s), λK(s) and γK(s). The energy dependence of the
parameters is given in [5]. Here, we are concerned only with pp scattering
at high energies.

3. BSW model

The BSW model was formulated more than thirty years ago by Bourrely,
Soffer and Wu to describe pp and pp̄ elastic scattering beyond the GeV [7–9].
In the TeV domain, the scattering amplitude is written as in Eq. (3)

M(s, t) =
is

2π

∫
d2~b e−i~q·

~b
(

1− e−Ω(s,~b )
)
, (6)

where Ω(s,~b) is related to the eikonal phase.
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One of the main features of the model is the fact that s- and b-depen-
dences in Ω(s,~b ) are factorized as

Ω
(
s,~b
)

= S(s)F (b) . (7)

The high-energy behaviour of S(s) is assumed to be given by

S(s) =
sc

(log s)c
′ +

uc

(log u)c
′ , (8)

where s and u are in GeV2 and the approximation log u = log s− iπ is valid
for the asymptotic behaviour at high energies.

The profile function F (b) is obtained as a Fourier transform of F̃ (t), i.e.,

F (b) =

∞∫
0

dq qF̃
(
−q2

)
J0(q b) , (9)

with

F̃ (t) = fG2(t)
a2 + t

a2 − t
and G(t) =

1(
1− t/m2

1

) (
1− t/m2

2

) , (10)

whereG(t) is the electromagnetic form factor of the proton. This assumption
means that the BSW model postulates that the charge distribution in the
proton is related to the matter distribution.

In the BSW model, there are only six energy-independent parameters c,
c′, m1, m2, a and f that are given in Table I.

TABLE I

Parameters for the BSW model. Extracted from Ref. [8].

c = 0.167 m1 = 0.577 GeV a = 1.858 GeV
c′ = 0.748 m2 = 1.719 GeV f = 6.971 GeV−2

4. HEGS model

The High Energy General Structure (HEGS) model was developed by
Selyugin [10, 11] for the description of elastic pp and pp̄ scattering, giving a
quantitative description of the data in a wide energy range of 9.8 ≤

√
s ≤

8000 GeV using a small number of fitting parameters. It uses the proton
electromagnetic form factors calculated from the General Parton Distribu-
tions (GPDs) and assumes, similarly to the BSW model, that the matter
distribution is proportional to the charge distribution on the proton.
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The hadronic amplitudes are calculated through a unitarization proce-
dure and are written, similarly to Eqs. (3) and (6), in the form of

FH(s, t) =
is

2π

∫
d2~b e−i~q·

~b
(

1− eχ(s,~b )
)

(11)

with the correspondence Ω(s,~b ) = −χ(s,~b ) (see Eq. (7)). The microscopic
contributions are taken into account in t-space through so-called Born terms
FBorn
h (s, t), which are used to form the complex quantity

χ(s, b) =
i

2π

∫
d2q ei

~b·~q FBorn
h

(
s,−q2

)
. (12)

The Born amplitude, in the extended version [11] of the model, is written
as the sum of three main contributions, two cross-even parts and one possible
odderon term

FBorn
h (s, t) = h1 F

2
1 (t)Fa(s, t)

(
1 +

R1

ŝ0.5

)
+h2A

2(t)Fb(s, t)

±hodd(t)A2(t)Fb(s, t)

(
1 +

R2

ŝ0.5

)
, (13)

where the + (−) sign is used to compute pp (pp̄) scattering and

hodd(t) = i h3 t/
(
1− r20 t

)
. (14)

The first two terms in Eq. (13) are interpreted by the author, respectively,
as a possible Pomeron and a cross-even part of non-perturbative three gluon
exchange. There may also be added a fourth contribution due to spin-flip,
which is not relevant in the high-energy domain and is not included here.
F1(t) and A(t) are hadronic form factors, parametrized as

F1

(
−q2

)
=

4m2
p + µ q2

4m2
p + q2

(
1

1 + q/a1 + q2/a22 + q3/a33

)2

,

A
(
−q2

)
=

Λ4

(Λ2 + q2)2
, (15)

where mp = 0.93827 GeV is the proton mass; Fa(s, t) and Fb(s, t) are Regge-
like terms

Fa(s, t) = ŝε eB(s, t) t , Fb(s, t) = ŝε eB(s, t) t/4 (16)
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with the slope1

B
(
s,−q2

)
=

(
α+ k

q

q0
e−k q

2 log ŝ

)
log ŝ , (17)

where q0 = 1 GeV and s0 = 4m2
p set the momentum and energy scale.

The energy dependence appears here and in Eq. (13), through the com-
plex quantity

ŝ = s e−iπ/2/s0 . (18)

This last version of the HEGS model contains seven energy-independent
fitting parameters, given in Table II. The parameters kept fixed are given
in the same table. The fit is performed simultaneously in the data from the
energy range of 9.8 ≤

√
s ≤ 8000 GeV.

TABLE II

The first two rows show fitting parameters for the extended version of HEGS model.
The second two rows give the fixed parameters in the data fit of the extended version
of HEGS model. All these parameters are extracted from Ref. [11].

Fitted parameters

h1 = 3.67 GeV−2 h2 = 1.39 GeV−2 h3 = 7.51 GeV−4 k = 0.16 GeV−2
R1 = 4.45 R2 = 53.7 r20 = 3.82 GeV−2

Fixed parameters

a1 = 16.7 GeV a22 = 0.78 GeV2 a33 = 12.5 GeV3 µ = 2.79
ε = 0.11 Λ2 = 1.6 GeV2 α = 0.24 GeV2

5. Discussion

Both BSW and HEGS models calculate the (s, t)-amplitudes in terms of
the Fourier transform of eikonal functions Ω(s,~b ) and χ(s,~b ), as shown in
Eqs. (6) and (11). The eikonals are related to the amplitude in the impact
parameter representation of the KFK model (Eq. (1)) through

1− e−Ω(s,~b ) = 1− eχ(s,~b ) = − i√
π

[
T̃R

(
s,~b
)

+ i T̃I

(
s,~b
)]

. (19)

The amplitudes T̃K(s,~b ) in b-space must fall fast with b, so that the inte-
gration can be performed numerically. They present oscillations for large |q|.

1 The slope here does not refer to the traditional definition of the slope in the final
hadronic amplitude responsible for the exponential behaviour at small t. Here, it
accounts for non-linear aspects in the Regge-like terms Fa(s, t) and Fb(s, t) presented
in the Born amplitude.



1022 E. Ferreira et al.

In the HEGS model, the integrands (1 − eχ(s,~b )) are not additive contribu-
tions of the terms of the Eq. (13) and it is not easy to identify the influence
term.

A comparison between the t-amplitudes is shown for 7 TeV in Fig. 1.
Their normalization is understood as the differential cross section dσ/dt
and the total cross section σ(s) are linked through

1

(~c)2
dσ

dt
= |T (s, t)|2 =

π

s2
|M(s, t)|2 =

π

s2
|FH(s, t)|2 , (20)

σtot(s)

(~c)2
= 4
√
π TI(s, 0) =

4π

s
MI(s, 0) =

4π

s
(FH)I(s, 0) . (21)
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Fig. 1. Real and imaginary amplitudes (top left) and differential cross section (top
right) of KFK (solid), BSW (dotted) and HEGS (dashed) models for

√
s = 7 TeV;

differential cross section for HEGS model with imaginary and real contribution for√
s = 7 TeV (bottom left), indicating the presence of a second zero in the imaginary

amplitude, that does not occur in KFK; the differential cross section prediction for√
s = 14 TeV (bottom right).



Comparative Analysis of Models for Elastic pp Scattering 1023

The Coulomb interaction is not included here. Figure 1 displays the dif-
ferential cross section of the three models for 7 TeV compared to TOTEM
data and the prediction for 14 TeV. Despite quite different microscopic con-
struction, HEGS and KFK models describe well the available data and it
is not possible to discriminate which one is in a better agreement with the
data.

The magnitude of imaginary amplitudes in the plots between zeros are
larger than the real magnitudes in the three models. These are oscillatory
in dσ/dt with dips near TI zeros, as shown in Fig. 1 for the HEGS model.
It will be difficult to confirm the oscillatory behaviour as they occur for
large−|t|. In the KFK model, the amplitudes TR(s, t) and TI(s, t) in t-space
have simpler analytical forms, with only one imaginary zero and two real
zeros (at least for |t| ∼ 30 GeV2).

The similarities of KFK, BSW and HEGS models can only be described
up to the location of the second real zero, namely up to |t| ≤ 3 GeV2 for√
s = 7 TeV. Figure 2 shows the zeros of the real and imaginary amplitudes

in the three models. We can note that the first real zero and the first
imaginary zero are in very good agreement among the three models.
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Fig. 2. Positions of zeros of the amplitudes of KFK, HEGS and BSW models as a
function of energy (left); real and imaginary amplitude of the models for small |t|
for
√
s = 7 TeV, with the slopes at t = 0, stressing that BR > BI in all cases.

A common feature of these three models with full |t|-description of the
amplitudes is that, although the values of slopes of imaginary and real ampli-
tudes at t = 0 are essentially different, they all agree BR 6= BI, in particular,
BR > BI. This behaviour is shown in Fig. 2 and must be taken into ac-
count in the analysis of the forward scattering data for the estimates of
the total cross sections σtot(s) and of the ρ(s) = TR(s, t = 0)/TI(s, t = 0)
quantities [12].
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