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A MODEL FOR STRONG INTERACTIONS AT HIGH
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We develop a consistent approach to describe soft interactions at high
energy based on the BFKL Pomeron and CGC/saturation. We build a two-
channel model, in which the opacity is determined by the exchange of the
dressed BFKL Pomeron. The Green function of the Pomeron is calculated
in the framework of CGC/saturation approach. Having eight parameters,
we obtained a good description of the experimental data at high energies
(W ≥ 0.546 TeV).
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1. Introduction

The strong interaction at high energies is one the most difficult and
thankless problems of high energy physics. The root of this problem is in
the embryonic stage of our understanding of non-perturbative QCD. Tra-
ditionally, we consider the strong interaction at high energy as a typical
example of the processes that occur at long distances, where the unknown
confinement of quark and gluons plays a crucial role making all our theoret-
ical efforts to treat these processes fruitless. As a result, the description of
these processes is the arena of high energy phenomenology based on Pomeron
calculus [1].

Our approach is to attempt to describe soft interactions by adopting
well established aspects of QCD [2] and extending these to the region of soft
interactions (low Q2).

2. Theoretical input

In this section, we briefly review our model which successfully describes
diffractive [3, 4] and inclusive cross sections [5]. The main ingredient of our
model is the BFKL [6] Pomeron Green function that we obtained using a
∗ Presented at EDS Blois 2015: The 16th Conference on Elastic and Diffractive
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CGC/saturation approach [7]. We determined this function from the so-
lution of the non-linear Balitsky–Kovchegov equation [8] using the MPSI
approximation [9] to sum enhanced diagrams, shown in Fig. 1 (a). It has
the following form:

Gdressed (T ) = a2(1 − exp (−T )) + 2a(1 − a)
T

1 + T
+ (1 − a)2G (T )

with G (T ) = 1 − 1

T
exp

(
1

T

)
Γ0

(
1

T

)
, (2.1)

T (s, b) = φ0S (b,m) e0.63λ ln(s/s0) with S (b,m) =
m2

2π
e−mb . (2.2)

In the above formulae, a = 0.65. This value was chosen, so as to obtain the
analytical form of the solution of the BK equation. m is a non-perturbative
parameter, which characterizes the large impact parameter behavior of the
saturation momentum, as well as the typical size of dipoles that take part in
the interaction. The value of m = 5.25 GeV in our model supports our main
assumption that the BFKL Pomeron calculus, based on a perturbative QCD
approach, is able to describe the soft physics, since m � µsoft, where µsoft

is the natural scale for soft processes (µsoft ∼ ΛQCD and/or pion mass).
Our first attempt to describe data at the LHC, based on the principles

mentioned above [3], was a one-channel model (i.e. we did not take into
account the small mass diffractive production) and had disappointing overall
results.

=
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c)b)
g (b)i

Fig. 1. (a) shows the set of the diagrams in the BFKL Pomeron calculus that
produce the resulting (dressed) Green function of the Pomeron in the framework
of high energy QCD. In (b), the net diagrams which include the interaction of
the BFKL Pomerons with colliding hadrons are shown. The sum of the diagrams
reduces to (c) after integration over positions of G3P in rapidity.

Consequently, we extended our formalism to a two-channel model [4]
which also allows us to calculate the diffractive production in the region of
small masses. In this model, we replace the rich structure of the produced
diffractively states by the single state with the wave function ψD.

The Good–Walker [10] formalism for the two-channel case allows us also
to calculate the low-mass diffractive states.
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A simple solution to the unitarity equation at high energies has the
eikonal form with an arbitrary opacity Ωik, where the real part of the am-
plitude is much smaller than the imaginary part

Ai,k(s, b) = i (1 − exp (−Ωi,k(s, b))) . (2.3)

The expressions for the physical observables in the Good–Walker formal-
ism are given in [4]. These include the components responsible for diffraction
in the small-mass region.

In the eikonal approach, we parametrize the arbitrary functions Ωik (s, b)
(opacity) in the form

Ωik (s, b) =

∫
d2b′d2b′′gi

(
mi, b

′) gk (mkb
′′) Gdressed

(
T
(
Y,~b−~b ′ −~b ′′

))
.

(2.4)
The summation of the ‘net’ diagram is then given by the following simplified
expression (see Ref. [11] for details):

Ω (s, b)i,k =

∫
d2b′

gi

(
~b′
)
gk

(
~b−~b′

)
G̃dressed (T )

1 + 1.29 G̃dressed (T )
[
gi

(
~b′
)

+ gk

(
~b−~b′

)] , (2.5)

where

G̃dressed (T ) =

∫
d2bGdressed (T (Y, b)) . (2.6)

The coefficient 1.29 results from the extraction of the value of G3P from the
CGC/saturation approach.

3. Diffraction production in the region of large mass

In this section, we also include, in the process of diffraction production,
the mechanism of production that originates from the dressed Pomeron and
has been discussed in Section 2.

For a single diffraction, the large mass contribution can be written as

σlarge mass
sd = 2

∫
d2b
{
α6Asd

1;1,1e
−2ΩD

1,1(Y ;b) + α2β4Asd
1;2,2 e

−2ΩD
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1;1,2 e

−(ΩD
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−(ΩD
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2,2(Y ;b)) + β6 Asd
2;2,2e

−2Ω2,2(Y ;b)
}
, (3.1)
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where

ΩD
i,k (Y ; b) =

∫
d2b′
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(
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)
gk

(
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)
Ḡdressed (T )(

1 + 1.29 Ḡdressed (T )
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)])2 , (3.2)

Asd
i;k,l (Y, Ymax, Ymin; b) =

∫
d2b′σdiff (Y, Ymax, Ymin, 1/m) d2b′ gigkgl

×SP
(
b′,mi

)
SP

(
~b−~b′,mk

)
SP

(
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)
, (3.3)

where Y = ln (s/s0), Ymax = ln
(
M2

max/s0

)
and Ymin = ln

(
M2

min/s0

)
. Mmax

and Mmin are the largest and smallest mass produced in the diffractive pro-
cesses. Equation (3.1) has simple physical meaning: each term is the prod-
uct of probability to produce a mass diffractively from the dressed Pomeron
(term exp (−

∑
Ω)) and the probability of the process of single diffraction,

from the dressed Pomeron (Ai;k,l).
For the double diffraction production at large mass, we have

σlarge mass
dd =

∫
d2b
{
α4Add

1,1 e
−2ΩD

1,1(Y ;b) + 2α2 β2Add
1,2 e

−2ΩD
1,2(Y ;b)

+β4Add
2,2e
−2ΩD

2,2(Y ;b)
}
, (3.4)

Add
i,k =

∫
d2bgigkS

i,k
DD (b)σdd (Y ) , (3.5)

where
Si,kDD (b) =

∫
d2b′Sp

(
b′,mi

)
Sp

(
~b−~b′,mk

)
. (3.6)

The expressions for σdiff (Y, Ymax, Ymin, r) and σdd are given in [4]

4. Fitting to experimental data

There are eight phenomenological parameters, which need to be deter-
mined by fitting to the experimental data: φ0, λ and m, gi and mi (i = 1, 2),
as well as α. We determine these parameters by fitting to the experimental
data on total, inelastic and elastic cross sections, single and double diffrac-
tive production cross sections, and the slope of the forward elastic differen-
tial cross section. The value of the minimal energy for data that we use is
W = 0.546 TeV, as starting from this energy the CGC/saturation approach,
is able to describe the data on inclusive production in proton–proton colli-
sions (see Ref. [12]).

The fitted parameters are tabulated in Table I.
The quality of the fit can be judged from Fig. 2.
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TABLE I
Fitted parameters of the model.

Model λ φ0 g1 g2 m m1 m2 β[
GeV−1

] [
GeV−1

]
[GeV] [GeV] [GeV]

2 channel 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58
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Fig. 2. Comparison with the experimental data: the energy behavior of the to-
tal (a), inelastic (b), elastic cross sections (c), as well as the elastic slope (Bel, (d)),
and single diffraction (e) and double diffraction (f) cross sections. The solid lines
show our present fit. The data has been taken from Ref. [13] for energies less than
the LHC energy. At the LHC energy for total and elastic cross section, we use
TOTEM data [14], and for single and double diffraction cross sections, data are
taken from Ref. [15]. The dotted line in (f) is discussed in [4].
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5. Conclusions

We have shown that a consistent model, based on BFKL Pomeron and
the CGC/saturation approach, can be built. We have demonstrated that
this model successfully describes data for the high energy hadron scattering.
In addition, we hope that this paper provides credence to the arguments that
the matching with long-distance physics (where the confinement of quarks
and gluons is essential) can be reached within the CGC/saturation approach
without requiring that the soft Pomeron should appear (as a Regge pole).
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