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We propose a new factorization formula for forward dijet production
in dilute–dense collisions which generalizes the hybrid high energy factor-
ization to the regime of the gluon saturation. The approach uses several
unintegrated gluon distributions convoluted with appropriate gauge invari-
ant off-shell hard factors calculated in two independent ways, in particular
using the color decomposition and the spinor helicty method. The new
formula extrapolates the Transverse Momentum Dependent (TMD) factor-
ization approach beyond the leading-twist and towards the small x.
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1. Introduction

One of the approaches to proton–nucleus collisions in the gluon satu-
ration [1] regime is the Color Glass Condensate (CGC) [2]. In particular,
when the observed final states consist in particles produced in the forward
direction, the underlying partonic kinematics is highly asymmetric, i.e. the
longitudinal fractions of the parent hadrons satisfy xA � xB, where xB is
the fraction of the proton momentum pB and xA is the fraction of the nu-
cleus momentum pA (see Fig. 1). Often, for such a setup, it is assumed that
the large-x parton is treated using the collinear factorization, i.e. it evolves
according to the DGLAP evolution, while for the small-x parton all the com-
plicated machinery of the CGC is used. Such an approach is often called
the hybrid approach [3]. Let us recall that in CGC, a process is described by
partonic wave functions propagating through the dense color field of nucleus
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expressed in terms of various correlators of the Wilson lines. In general,
those correlators are process-dependent and thus there is no factorization.
Despite the complexity, the CGC approach has been successfully applied to
the phenomenology at RHIC [4].
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Fig. 1. Forward dijet production in the dilute–dense collision within the hybrid
factorization approach. The upper blob undergoes the DGLAP evolution, while
the bottom blob corresponds to small-x type of evolution.

It was argued in [5] that at the LHC energies, one can establish an ‘ef-
fective’ factorization for dijets, which is capable of describing processes in
the saturation domain in terms of several universal building blocks (unin-
tegrated gluon distributions). This approach utilized a power counting in
CGC to establish a connection with the Transverse Momentum Dependent
(TMD) factorization approach and thus the definition of gluon distributions
was possible. However, by removing the higher twists, the link to the High
Energy Factorization (HEF) [1, 6, 7] was lost. It is not desired, as HEF is
quite successful in describing LHC proton–proton dijet data, provided suit-
able unintegrated gluon distributions are used (see e.g. [8–10]). Here, we
report on a new approach which extrapolates the result of [5] to include the
higher twist contributions and thus makes it possible to apply in the dijet
decorrelation regime.

2. Scale regimes

Let us start by a short summary of the potentially large scales present
in our problem and the available approaches.

The process under consideration is depicted in Fig. 1. The jets are pro-
duced with a certain average transverse momentum of the order of PT which
by definition sets the largest scale. The jets with momenta pT1, pT2 are
decorrelated by an amount kT = |~kT| = |~pT1 + ~pT2| due to untagged emis-
sions. In the spirit of the hybrid formalism, the transverse momentum ~kT
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enters the nonperturbative matrix elements parameterizing the nucleus. The
momentum disbalance kT sets another, possibly large, scale in our problem.
Finally, the third scale is given by the saturation scale Qs which increases
with xA decreasing. Below, we list the scale regimes depending on the rela-
tive magnitude of this three scales involved:

— Color Glass Condensate. This is the best suited approach when all the
three scales are of the same order Qs ∼ kT ∼ PT.

— Collinear Factorization. If xA, xB are both large, we are well outside
the saturation regime (the saturation scale is small, Qs ∼ ΛQCD). Sup-
pose, in addition, that the jets are produced back-to-back, kT � PT.
Then, essentially, we are in the standard leading twist collinear fac-
torization regime. The cross section is given by the convolution of
collinear (or ‘integrated’) PDFs and on-shell amplitude squared.

— High Energy Factorization (HEF). If xA is small but we are still out-
side the saturation regime, Qs � kT ∼ PT, the BFKL-type resumma-
tion [11] is needed. This leads to the High Energy or kT-factorization
[1, 6, 7] where the cross section is expressed in terms of Unintegrated
Gluon Distribution (UGD) (for nucleus) and off-shell gauge invariant
amplitude squared. This approach takes into account higher twist
corrections O(kT/PT).

— Generalized TMD Factorization. When we are in the saturation regime
and the dijet decorrelation region, i.e. kT ∼ Qs � PT, one can estab-
lish an ‘effective’ factorization [5]. First, studying the CGC approach
in that limit, one can show that at large Nc the cross section involves
two distinct UGDs: the so-called ‘dipole’ UGDG2 and the Weizsacker–
Williams UGD G1. They are universal, i.e. can be accessed in different
processes. Second, these two UGDs can be recognized also within the
Transverse Momentum Dependent (TMD) factorization approach, i.e.
when constructing TMD gluon distributions using [12] and taking the
large Nc and small x limits. This approach provides a tool to describe
dijets in proton–nucleus collisions in terms of factorization.

— When we are in the saturation regime and the dijet decorrelation re-
gion, the HEF is no longer valid. It turns out that one needs more
UGDs than one (on CGC side, it can bee seen as a need of correlators
of more than two Wilson lines). In [13], an extension of the previous
approach has been proposed, which generalizes HEF to the saturation
regime. Below, we refer to this approach as Improved TMD Factoriza-
tion, although one may call it an improved high energy factorization
as well.
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3. Improved TMD factorization

Our main result [13] can be summarized by the following factorization
formula for the cross section for forward dijet production in dilute–dense
collisions:

dσpA→dijets+X

d2PTd2kTdy1dy2
=

α2
s (µ)

(xAxBS)2

∑
a,c,d

xBfa(xB, µ)

×
2∑
i=1

K
(i)
ag∗→cdΦ

(i)
ag→cd(xA, kT, µ)

1

1 + δcd
, (1)

where y1, y2 are the rapidities of the outgoing parton momenta p1, p2,
PT = (1− z)pT1− zpT2 with z = p+1 /(p

+
1 +p+2 ). The fa is the collinear PDF

for parton a, while Φ(i)
ag→cd, i = 1, 2 are the TMD gluon distributions in a

nucleon corresponding to subprocess ag → cd. Finally, K(i)
ag∗→cd, i = 1, 2 are

the hard factors calculated from the gauge invariant color-ordered ampli-
tudes corresponding to off-shell ag∗ → cd subprocess. When calculating the
off-shell matrix elements with gluons, we have used methods of [14–16] (cor-
responding also to the Lipatov’s effective vertices [17]). The hard off-shell
factors are:

K(1)
gq→gq = −

u
(
s 2 + u 2

)
2tt̂ŝ

(
1 +

sŝ− tt̂
N2

c uû

)
, (2)

K(2)
gq→gq = −CF

Nc

s
(
s 2 + u 2

)
tt̂û

, (3)

K
(1)
gg→qq =

1

2Nc

(
t
2

+ u 2
) (
uû+ tt̂

)
sŝt̂û

, (4)

K
(2)
gg→qq =

1

4N2
cCF

(
t
2

+ u2
) (
uû+ tt̂− sŝ

)
sŝt̂û

, (5)

K(1)
gg→gg =

Nc

CF

(
s 4 + t

4
+ u 4

) (
uû+ tt̂

)
t̄t̂ūûs̄ŝ

, (6)

K(2)
gg→gg = − Nc

2CF

(
s 4 + t

4
+ u 4

) (
uû+ tt̂− sŝ

)
t̄t̂ūûs̄ŝ

, (7)

where various Mandelstam variables are defined as

ŝ = (kA + kB)2 = (p1 + p2)
2 , s̄ = (xApA + kB)2 , (8)

t̂ = (p2 − kB)2 = (p1 − kA)2 , t̄ = (xApA − p1)2 , (9)
û = (p1 − kB)2 = (p2 − kA)2 , ū = (xApA − p2)2 (10)
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with kA = xApA + kT and kB = xBpB being the momenta of the incoming
partons, with the first one being off-shell. The unintegrated gluon distribu-
tions corresponding to hard factors are:

Φ(1)
gq→gq = F (1)

qg , (11)

Φ(2)
gq→gq =

1

N2
c − 1

(
−F (1)

qg +N2
cF (2)

qg

)
, (12)

Φ
(1)
gg→qq =

1

N2
c − 1

(
N2

cF (1)
gg −F (3)

gg

)
, (13)

Φ
(2)
gg→qq = −N2

cF (2)
gg + F (3)

gg , (14)

Φ(1)
gg→gg =

1

2N2
c

(
N2

cF (1)
gg − 2F (3)

gg + F (4)
gg + F (5)

gg +N2
cF (6)

gg

)
, (15)

Φ(2)
gg→gg =

1

N2
c

(
N2

cF (2)
gg − 2F (3)

gg + F (4)
gg + F (5)

gg +N2
cF (6)

gg

)
, (16)

where the F (i)
ag objects are matrix elements of bilocal gluon operators with

various Wilson line insertions (appearing due to resummation of collinear
gluons). For example

F (1)
qg = 2

∫
dξ+d2ξT

(2π)3p−A
e ixAp

−
Aξ

+−i~kT·~ξT 〈pA|Tr
{
F+i (ξ)U [−]†F+i (0)U [+]

}
|pA〉

(17)
with the gluon field strength tensors in the fundamental representation and
the gauge links defined as U [±] = U(0,±∞; 0T)U(±∞, ξ+; ξT), where the
path exponential is U(a, b;xT) = P exp

[
ig
∫ b
a dx

+A−a (x+, xT)ta
]
. The rest

of the matrix elements are (with Fourier transforms omitted and matrix
element replaced by an average for compactness):

F (2)
qg ∼

〈
Tr

{
F (ξ)

TrU [�]

Nc
U [+]†F (0)U [+]

}〉
, (18)

F (1)
gg ∼

〈
Tr

{
F (ξ)

TrU [�]

Nc
U [−]†F (0)U [+]

}〉
, (19)

F (2)
gg ∼

1

Nc

〈
Tr
{
F (ξ)U [�]†

}
Tr
{
F (0)U [�]

}〉
, (20)

F (3)
gg ∼

〈
Tr
{
F (ξ)U [+]†F (0)U [+]

}〉
, (21)
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F (4)
gg ∼

〈
Tr
{
F (ξ)U [−]†F (0)U [−]

}〉
, (22)

F (5)
gg ∼

〈
Tr
{
F (ξ)U [�]†U [+]†F (0)U [�]U [+]

}〉
, (23)

F (6)
gg ∼

〈
Tr
{
F (ξ)U [+]†F (0)U [+]

}(TrU [�]

Nc

)2〉
. (24)

Above, the gauge loops are defined as U [�] = U [+]U [−]† = U [−]U [+]†.
Note, that the above formulae are all finite-Nc expressions. In order to

obtain the ‘effective’ factorization i.e. to restore the universality, one needs
to take the large Nc limit. In that limit, the surviving gluon distributions
are F (1)

qg and F (3)
gg which correspond to ‘dipole’ UGD G2 and the Weizsacker–

Williams UGD G1.

4. Summary

The factorization formula (1) is not a theorem of perturbative QCD, it
however, has limiting cases which are solid results of QCD. The formula is
valid in the saturation regime and in the whole range of dijet momentum
disbalance. It can be considered as a generalization of the High Energy
Factorization to the saturation regime. Its main property is a presence of
several unintegrated gluon distributions which at large Nc limit are present
in other processes like inclusive DIS or photon–jet production in hadron–
hadron collisions, thus being (to certain extent) universal.

The author was supported by the grants DEC-2011/01/B/ST2/03643
and DE-FG02-93ER40771.

REFERENCES

[1] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983).
[2] F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl.

Part. Sci. 60, 463 (2010).
[3] A. Dumitru, A. Hayashigaki, J. Jalilian-Marian, Nucl. Phys. A 765, 464

(2006).
[4] J.L. Albacete, C. Marquet, Prog. Part. Nucl. Phys. 76, 1 (2014).
[5] F. Dominguez, C. Marquet, B.-W. Xiao, F. Yuan, Phys. Rev. D 83, 105005

(2011).
[6] S. Catani, M. Ciafaloni, F. Hautmann, Nucl. Phys. B 366, 135 (1991).
[7] J.C. Collins, R.K. Ellis, Nucl. Phys. B 360, 3 (1991).

http://dx.doi.org/10.1016/0370-1573(83)90022-4
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.014
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.014
http://dx.doi.org/10.1016/j.ppnp.2014.01.004
http://dx.doi.org/10.1103/PhysRevD.83.105005
http://dx.doi.org/10.1103/PhysRevD.83.105005
http://dx.doi.org/10.1016/0550-3213(91)90055-3
http://dx.doi.org/10.1016/0550-3213(91)90288-9


Improved Effective TMD Factorization for Forward Dijet Production . . . 913

[8] A. van Hameren, P. Kotko, K. Kutak, S. Sapeta, Phys. Lett. B 737, 335
(2014).

[9] P. Kotko, W. Slominski, D. Toton, Acta Phys. Pol. B 46, 1527 (2015)
[arXiv:1504.00823 [hep-ph]].

[10] A. van Hameren, P. Kotko, K. Kutak, Phys. Rev. D 92, 054007 (2015)
[arXiv:1505.02763 [hep-ph]].

[11] L.N. Lipatov, Phys. Rep. 286, 131 (1997).
[12] C.J. Bomhof, P.J. Mulders, F. Pijlman, Eur. Phys. J. C 47, 147 (2006).
[13] P. Kotko et al., J. High Energy Phys. 1509, 106 (2015) [arXiv:1503.03421

[hep-ph]].
[14] A. van Hameren, P. Kotko, K. Kutak, J. High Energy Phys. 1212, 029

(2012).
[15] A. van Hameren, P. Kotko, K. Kutak, J. High Energy Phys. 1301, 078

(2013).
[16] P. Kotko, J. High Energy Phys. 1407, 128 (2014).
[17] E.N. Antonov, L.N. Lipatov, E.A. Kuraev, I.O. Cherednikov, Nucl. Phys. B

721, 111 (2005).

http://dx.doi.org/10.1016/j.physletb.2014.09.005
http://dx.doi.org/10.1016/j.physletb.2014.09.005
http://dx.doi.org/10.5506/APhysPolB.46.1527
http://dx.doi.org/10.1103/PhysRevD.92.054007
http://dx.doi.org/10.1016/S0370-1573(96)00045-2
http://dx.doi.org/10.1140/epjc/s2006-02554-2
http://dx.doi.org/10.1007/JHEP09(2015)106
http://dx.doi.org/10.1007/JHEP12(2012)029
http://dx.doi.org/10.1007/JHEP12(2012)029
http://dx.doi.org/10.1007/JHEP01(2013)078
http://dx.doi.org/10.1007/JHEP01(2013)078
http://dx.doi.org/10.1007/JHEP07(2014)128
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.013
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.013

	1 Introduction
	2 Scale regimes
	3 Improved TMD factorization
	4 Summary

