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We report on our NLL BFKL studies of the Mueller–Navelet jets. We
first perform a complete NLL BFKL analysis supplemented by a BLM
renormalization scale fixing procedure, which is successfully compared with
recent CMS data. Second, we argue for the need of a measurement of an
asymmetric jet configuration in order to perform a valuable comparison
with fixed order approaches. Third, we predict that the energy-momentum
violation is rather tiny in the NLL BFKL approach, for an asymmetric jet
configuration. Finally, we argue that the double parton scattering contri-
bution is negligible in the kinematics of actual CMS measurements.
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1. Introduction

The high energy dynamics of QCD, described by the Balitsky–Fadin–
Kuraev–Lipatov (BFKL) approach [1–4], have been the subject of intense
studies since four decades. The production of two forward jets separated by
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a large interval of rapidity at hadron colliders, as proposed by Mueller and
Navelet [5], is one of the most promising observables in order to reveal these
dynamics. We here report on our study of this process in a next-to-leading
logarithmic (NLL) BFKL approach.

The BFKL treatment involves two main building blocks, the jet vertex
and Green’s function. Our complete NLL BFKL analysis of Mueller–Navelet
jets, including the NLL corrections both to Green’s function [6,7] and to the
jet vertex [8,9], demonstrated that the NLL corrections to the jet vertex have
a very large effect, leading to a lower cross section and a much larger az-
imuthal correlation [10]. However, these findings are very dependent on the
choice of the scales, especially the renormalization scale µR and the factor-
ization scale µF, a fact which remains true when using realistic kinematical
cuts for LHC experiments [11]. In order to reduce this dependency, we then
used the Brodsky, Lepage and Mackenzie (BLM) scheme [12]. The net re-
sult is that one can obtain a very satisfactory description [13] of the most
recent LHC data extracted by the CMS Collaboration for the azimuthal
correlations of these jets [14,15].

After a recall of these NLL results, we discuss the relevance of energy-
momentum conservation in our NLL BFKL treatment. We then evaluate the
importance of the potential contribution of multiparton interaction (MPI).

2. BFKL approach

The production of two jets of transverse momenta kJ,1, kJ,2 and rapidi-
ties yJ,1, yJ,2 is described by the differential cross section

dσ

d|kJ,1| d|kJ,2| dyJ,1 dyJ,2
=
∑
a,b

1∫
0

dx1

1∫
0

dx2 fa(x1)fb(x2)

×
dσ̂a,b

d|kJ,1| d|kJ,2| dyJ,1 dyJ,2
, (1)

where fa,b are the usual collinear partonic distributions (PDF). In the BFKL
framework, the partonic cross section reads

dσ̂a,b
d|kJ,1| d|kJ,2| dyJ,1 dyJ,2

=

∫
dφJ,1 dφJ,2

∫
d2k1 d

2k2 Va(−k1, x1)G(k1,k2, ŝ), Vb(k2, x2) , (2)

where Va,b and G are respectively the jet vertices and the BFKL Green’s
function. One should note that the use of conventional PDF in Eq. (1) is
justified by the fact that the rapidity Y = yJ,1− yJ,2 is large enough so that
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the momentum fractions x1 and x2 are not parametrically small. Besides the
cross section, the azimuthal correlation of the two jets is another relevant
observable sensitive to resummation effects [16, 17]. Denoting as φJ,1, φJ,2
the azimuthal angles of the two jets, and defining the relative azimuthal
angle ϕ such that ϕ = 0 corresponds to the back-to-back configuration, the
moments of this distribution read

〈cos(nϕ)〉 ≡ 〈cos (n (φJ,1 − φJ,2 − π))〉 =
Cn
C0
, (3)

with
C0 =

dσ

d|kJ,1| d|kJ,2| dyJ,1 dyJ,2
(4)

and

Cn = (4− 3δn,0)

∫
dν Cn,ν (|kJ,1|, xJ,1)C∗n,ν (|kJ,2|, xJ,2)

(
ŝ

s0

)ω(n,ν)

. (5)

The coefficients Cn,ν are given by

Cn,ν(|kJ |, xJ) =

∫
dφJ d

2k dx f(x)V (k, x)En,ν(k) cos(nφJ) , (6)

where
En,ν(k) =

1

π
√

2

(
k2
)iν− 1

2 einφ . (7)

At leading logarithmic (LL) accuracy, the jet vertex reads

Va(k, x) = V (0)
a (k, x) =

αs√
2

CA/F

k2 δ
(

1− xJ
x

)
|kJ |δ(2)(k − kJ) , (8)

with CA = Nc = 3 (incoming gluon) and CF = (N2
c − 1)/(2Nc) = 4/3 (in-

coming quark). The expressions of the next-to-leading order (NLO) correc-
tions to Va [8,9,18–20] can be found in Ref. [10]. They have been computed
in the limit of small cone jets in Ref. [21] and used in Refs. [22–26] (see
also [27]). The LL BFKL trajectory reads

ω(n, ν) = ᾱss

[
2Ψ(1)− Ψ

(
n+ 1

2
+ iν

)
− Ψ

(
n+ 1

2
− iν

)]
, (9)

where ᾱss = Ncαs/π, while at NLL, its analytical expression is much more
involved [28–33], see Ref. [11] for explicit formulas.

Even at NLL accuracy, several observables depend strongly on the choice
of the scales, and, in particular, the renormalization scale µR. An optimiza-
tion procedure to fix the renormalization scale allows to reduce this depen-
dency. We use the BLM procedure [12], which is a way of absorbing the
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non-conformal terms of the perturbative series in a redefinition of the cou-
pling constant, to improve the convergence of the perturbative series. The
first practical implementation of the BLM procedure in the context of BFKL
was performed in Refs. [34–37]. In Refs. [36, 37], it was argued that, when
dealing with BFKL calculations, the BLM procedure is more conveniently
applied in a physical renormalization scheme like the MOM scheme instead
of the usual MS scheme, a method followed in Refs. [38–40]. The observables
introduced above in the MS scheme can be obtained in the MOM scheme
using [41,42]

αMS = αMOM

(
1 + αMOM

TMOM

π

)
, (10)

where

TMOM = T βMOM + T conf
MOM ,

T conf
MOM =

Nc

8

[
17

2
I +

3

2
(I − 1) ξ +

(
1− 1

3
I

)
ξ2 − 1

6
ξ3

]
,

T βMOM = −β0

2

(
1 +

2

3
I

)
, (11)

where I = −2
∫ 1

0 dx ln(x)/[x2−x+1] ' 2.3439 and ξ is the covariant gauges
parameter. Performing the transition from the MS to the MOM schemes,
one should then choose the renormalization scale to make the β0-dependent
part vanish. This is achieved with

µ2
R,BLM = |kJ,1| · |kJ,2| exp

[
1
2χ0(n, γ)− 5

3 + 2
(
1 + 2

3I
)]
. (12)

3. Results: symmetric and asymmetric configurations

3.1. Symmetric configuration and CMS data

We first compare our results with the measurement performed by the
CMS Collaboration on the azimuthal correlations of Mueller–Navelet jets at
the LHC at a center-of-mass energy

√
s = 7 TeV [14]. The two jets have

transverse momenta larger than 35 GeV and rapidities lower than 4.7. We
use the anti-kt jet algorithm [43] with a size parameter R = 0.5 and the
MSTW 2008 [44] parametrization for the PDFs. In the plots of Figs. 1
and 2, we show the CMS data (black dots with error bars), the NLL BFKL
result using the “natural” scale choice µR =

√
|kJ,1| · |kJ,2| (solid black line)

and the NLL BFKL results using the BLM scale setting (gray error band1).

1 The gray error band corresponds to the typical theoretical uncertainty when practi-
cally implementing the BLM procedure.
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Our results for the angular correlations 〈cosϕ〉 and 〈cos 2ϕ〉 as a function
of Y are shown in Fig. 1 (left) and (right) respectively. For these two observ-
ables, the NLL BFKL calculation with the “natural” scale choice predicts a
strong correlation, while using the BLM procedure to fix the renormalization
scale leads to a very good agreement with the data.

Fig. 1. Symmetric configuration. Left: Variation of 〈cosϕ〉 as a function of Y at
NLL accuracy compared with CMS data. Right: Variation of 〈cos 2ϕ〉 as a function
of Y at NLL accuracy compared with CMS data.

This improvement due to the BLM procedure is most clearly seen through
the azimuthal distribution of the jets 1

σ
dσ
dϕ

1

σ

dσ

dϕ
=

1

2π

{
1 + 2

∞∑
n=1

cos (nϕ) 〈cos (nϕ)〉

}
, (13)

as displayed in Fig. 2 (left).

Fig. 2. Symmetric configuration. Left: Azimuthal distribution at NLL accuracy
compared with CMS data. Right: Variation of 〈cos 2ϕ〉/〈cosϕ〉 as a function of Y
at NLL accuracy compared with CMS data.
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It was already observed both at LL and NLL accuracy [10, 11, 31–33]
that ratios of the kind 〈cosmϕ〉/〈cosnϕ〉 with n 6= 0 are much more stable
with respect to the scales than individual moments 〈cosnϕ〉 and, therefore,
are almost not affected by the BLM procedure. Indeed, Fig. 2 (right) for
〈cos 2ϕ〉/〈cosϕ〉 shows that the good agreement with the data was obtained
when using either the “natural” scale or the BLM procedure.

3.2. Asymmetric configuration: BFKL versus fixed order

It is well-known that fixed-order calculations are unstable when the lower
cut on the transverse momenta of both jets is the same [45, 46]. This is the
situation encountered by the above CMS measurement [14]. Still, a compar-
ison of the agreement of a fixed-order calculation and of a BFKL one with
data would be very useful to further investigate the need for resummation
effects at high energy. We now choose the lower cut on the transverse mo-
menta of the jets to slightly differ. In practice, this is implemented by taking
the same cuts as above, but now with the additional requirement that the
transverse momentum of at least one jet is larger than 50 GeV, making the
fixed-order calculation now trustable. As discussed previously, the quantities
〈cosnϕ〉 are not very stable even at NLL accuracy in the BFKL approach, so
that a comparison with a fixed-order calculation for these observables would
not be very meaningful. On the contrary, the observable 〈cos 2ϕ〉/〈cosϕ〉 is
more stable in the BFKL approach. Figure 3 shows the comparison of the
NLL BFKL calculation with the results obtained with the NLO fixed-order
code Dijet [47] and clearly demonstrates that a sizable difference between
the two treatments is expected over a large Y range.

Fig. 3. Asymmetric configuration. Variation of 〈cos 2ϕ〉/〈cosϕ〉 as a function of Y
at NLL accuracy compared with a fixed-order treatment.
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One should note that in the very peculiar situation where the two jets
are almost back-to-back, for which a fixed-order calculation is unstable, re-
summation effects à la Sudakov should be considered to stabilize the calcu-
lation. In the BFKL approach, although this back-to-back limit is stable,
the azimuthal distribution can be significantly affected by such resummation
effects. These have been obtained recently in the LL approximation [48].

4. Energy-momentum conservation

It is well-known that energy-momentum conservation is not satisfied in
the BFKL approach, being formally a sub-leading effect. Still, it could be
numerically important, at least at LL accuracy. It was proposed [49] to eval-
uate the importance of this effect by comparing the results of an exact O(α3

s )
calculation with the BFKL result, expanded in powers of αs and truncated
to the order of α3

s . This showed that an LL BFKL calculation strongly over-
estimates the cross section with respect to an exact calculation as long as the
two jets transverse momenta are not very similar (which is the case in the
asymmetric configuration discussed above). In the same spirit, a study with
LO vertices and NLL Green’s function was performed in Ref. [50]. Having in
mind that adding corrections beyond the LL approximation should reduce
the violation of energy-momentum conservation, we here also include NLO
corrections to the jet vertices [51]. Consider the effective rapidity Yeff [49]

Yeff ≡ Y
C2→3
m

CBFKL,O(α3
s )

m

, (14)

where C2→3
m is the exactO(α3

s ) result obtained by studying the reaction gg →
ggg, while CBFKL,O(α3

s )
m is the BFKL result expanded in powers of αs and

truncated to the order O(α3
s ). This effective rapidity (14) has the property

that if one replaces Y by Yeff in the BFKL calculation, expands in powers of
αs and truncates to the order of α3

s , the exact result is recovered. The value
of Yeff indicates how valid the BFKL approximation is: a value close to Y
means that this approximation is valid, whereas a value significantly different
from Y means that it is a too strong assumption in the kinematics under
study. In Fig. 4, we show the values obtained for Yeff as a function of kJ,2 for
fixed kJ,1 = 35 GeV at a center-of-mass energy

√
s = 7 TeV and for a rapidity

separation Y = 8, in the LL and NLL approximation. As found in Ref. [49],
the LL calculation strongly overestimates the cross section for transverse
momenta of the jets not too close. At NLL accuracy, the situation is much
improved for significantly different jet transverse momenta (as needed to
obtain trustable results in the fixed order approach): the effective rapidity
is very close to Y so that the violation of energy-momentum should be much
less severe at NLL accuracy.
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Fig. 4. Variation of Yeff/Y as defined in Eq. (14) as a function of kJ,2 at fixed
kJ,1 = 35 GeV for Y = 8 and

√
s = 7 TeV at leading logarithmic (black/blue) and

next-to-leading logarithmic (gray/brown) accuracy.

5. Double parton scattering contribution to MN jets

At high energies and low transverse momenta, where BFKL effects are
expected to be enhanced, parton densities can become large enough that
contributions where several partons from the same incoming hadron take
part in the interaction could become important. We restrict ourselves to the
case of double parton scattering where there are at most two scattering sub-
processes and where both these scatterings are hard, as illustrated in Fig. 5.

Fig. 5. The DPS contribution.

For simplicity, the order of magnitude of this contribution is evaluated at
LL, which we compare with our prediction involving single parton scattering
in the BFKL LL and NLL approaches. We use a simple factorized Ansatz
to compute the DPS contribution according to

σDPS =
σfwdσbwd

σeff
, (15)
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where σfwd(bwd) is the inclusive cross section for one jet in the forward (back-
ward) direction and σeff is a phenomenological quantity related to the density
of the proton in the transverse plane. We vary σeff between 10 and 20 mb,
to be consistent with the measurements at the Tevatron [52–55] and at the
LHC [56, 57]. Each of the inclusive cross sections for one jet in the forward
(backward) direction is built as the convolution of the LO jet vertex with
unintegrated gluon distributions (UGD) [58–65], the global normalization
being fitted with CMS [66] data (see Ref. [67] for more details), for four
different parametrizations. We focus on four choices of kinematical cuts:

√
s = 7 TeV , |kJ,1| = |kJ,2| = 35 GeV,
√
s = 14 TeV , |kJ,1| = |kJ,2| = 35 GeV,
√
s = 14 TeV , |kJ,1| = |kJ,2| = 20 GeV,
√
s = 14 TeV , |kJ,1| = |kJ,2| = 10 GeV.

Fig. 6. Comparison of the differential cross section obtained at LL (thin solid green
line) and NLL (gray/red hatched band) accuracy in the BFKL approach and the
DPS cross section (black/blue hatched band) for the four kinematical cuts described
in the text.
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The first choice is similar to the cuts used by the CMS analysis of azimuthal
correlations of Mueller–Navelet jets at the LHC [14], as displayed in Figs. 1
and 2. The other three choices correspond to the higher center-of-mass en-
ergy that the LHC is expected to reach soon. The last two choices correspond
to lower transverse momenta at which measurements could become possible
in the future, and are particularly relevant since MPI are expected to be-
come more and more important at lower transverse momenta. The rapidities
of the jets are restricted according to 0 < yJ,1 < 4.7 and −4.7 < yJ,2 < 0.
We use the MSTW 2008 parametrization [44] for collinear parton densi-
ties. To estimate the uncertainty associated with the choice of the UGD
parametrization needed to compute the DPS cross section, we use the same
four parametrizations. Our results are displayed in Fig. 6. The resulting
uncertainty on the DPS cross section is rather large. Still, this cross section
is always smaller than the SPS one in the LHC kinematics we considered
here. The same conclusion can be addressed for the impact of double parton
scattering on the angular correlation between the jets. It is only for the
set of parameters giving the largest DPS contribution, i.e. at low transverse
momenta and large rapidity separations, that the effect of DPS can become
larger than the uncertainty on the NLL BFKL calculation.

6. Conclusions

The azimuthal correlations of Mueller–Navelet jets recently extracted
by the CMS Collaboration can be well described by a full NLL BFKL cal-
culation supplemented by the use of the BLM procedure to fix the renor-
malization scale. We also studied two effects which are claimed to have a
potentially significant impact in this picture. First, we have shown that the
effect of the absence of strict energy-momentum conservation in a BFKL
calculation is expected to be tiny at NLL accuracy for significantly different
values of transverse momenta of the tagged jets. Second, we have shown
that the order of magnitude of DPS contributions is presumably negligible
for the kinematics which is under consideration at the LHC. Further studies
would be required at low transverse momenta and very high center-of-mass
energies.
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