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The Mueller–Navelet di-jet production process represents an ultimate
test field of pQCD in the high-energy limit. Several experimental analyses
carried out so far are in a good agreement with theoretical predictions,
based on collinear factorization and BFKL resummation of energy loga-
rithms in the next-to-leading approximation, with the CMS experimental
data at center-of-mass energy equal to 7 TeV. However, the question if the
same data can be described also by fixed-order perturbative approaches has
not yet been fully answered. We discuss how the use of partially asymmetric
cuts in the transverse momenta of the detected jets allows to discriminate
between BFKL-resummed and fixed-order predictions (the latter in the
high-energy limit) in observables related with this process at the LHC.
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1. Introduction

The inclusive hadro-production of two jets featuring transverse momenta
of the same order and much larger than the typical hadronic masses and
being separated by a large rapidity gap Y , the so-called Mueller–Navelet
jets [1], is a fundamental testfield for perturbative QCD in the high-energy
limit. At the LHC energies, the theoretical description of this process lies
between two distinct approaches: collinear factorization and BFKL [2] re-
summation. On the one hand, at leading twist, the process can be seen
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as the hard scattering of two partons, each emitted by one of the colliding
hadrons according to the appropriate parton distribution function (PDF),
see Fig. 1 of [3]. Collinear factorization takes care to resum the logarithms of
the hard scale, through the standard DGLAP evolution [4] of the PDFs and
the fixed-order radiative corrections to the parton scattering cross section.
The other approach is the BFKL resummation of energy logarithms, which
are so large to compensate the small QCD coupling and must, therefore, be
accounted for to all orders. These logarithms are related with the emission
of undetected partons between the two jets (the larger s, the larger the num-
ber of partons), which lead to a reduced azimuthal correlation between the
two detected forward jets, in comparison to the fixed-order DGLAP calcu-
lation, where jets are emitted almost back-to-back. In the BFKL approach,
energy logarithms are systematically resummed in the leading logarithmic
approximation (LLA) and in the next-to-leading logarithmic approximation
(NLA). To get the cross section, the BFKL Green’s function must be convo-
luted with two impact factors for the transition from the colliding parton to
the forward jet. They were first calculated with NLO accuracy in [5] and the
result was later confirmed in [6]. A simpler expression, more practical for
numerical purposes, was obtained in [7] adopting the so-called “small-cone”
approximation (SCA) [8, 9]. Unfortunately, the NLO BFKL corrections for
the n = 0 conformal spin are with the opposite sign with respect to the lead-
ing order (LO) result and large in absolute value [10]. This calls for some
optimization procedure. Common optimization methods are those inspired
by the principle of minimum sensitivity (PMS) [11], the fast apparent conver-
gence (FAC) [12] and the Brodsky–LePage–Mackenzie method (BLM) [13].
This variety of options reflects in the large number of numerical studies of
the Mueller–Navelet jet-production process at the LHC, both at a center-of-
mass energy of 14 TeV [14–16] and 7 TeV [17–20]. In the case of asymmetric
cuts, the Born term, present only for back-to-back jets, is suppressed and
the effects of the additional undetected hard gluon radiation is enhanced,
thus making more visible the BFKL resummation, with respect to DGLAP
calculations, in all observables involving C0 [20]. So, we compare predictions
for several azimuthal correlations and their ratios obtained, on the one hand,
by a fixed-order high-energy DGLAP calculation at the NLO and, on the
other hand, by BFKL resummation in the NLA. To single out the only effect
of transverse momentum cuts, we consider just one optimization procedure
(the BLM one, in the two variants discussed in [21]).
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2. Theoretical setup

The process under exam is the production of Mueller–Navelet jets [1] in
proton–proton collisions

p(p1) + p(p2)→ jet(kJ1) + jet(kJ2) +X , (1)

where the two jets are characterized by high transverse momenta, ~k2J1 ∼
~k2J2 � Λ2

QCD and large separation in rapidity, while p1 and p2 are taken as
Sudakov vectors. The cross section of the process can be presented as

dσ

dyJ1dyJ2 d
∣∣∣~kJ1∣∣∣ d ∣∣∣~kJ2∣∣∣ dφJ1dφJ2 =

1

(2π)2

[
C0 +

∞∑
n=1

2 cos(nφ) Cn

]
, (2)

where φ = φJ1 − φJ2 − π, while C0 gives the total cross section and the
other coefficients Cn determine the distribution of the azimuthal angle of the
two jets. We concentrate on the so-called exponentiated representation, and
use the BLM optimization procedure, i.e. we choose the scale µR such that
it makes vanish completely the β0-dependence of a given observable. As
discussed in [20], we implement two variants of the BLM method, dubbed
(a) and (b) [21]. A common optimal value for the renormalization scale µR
and for the factorization scale µF is used. In [20], it was shown that this
setup allows a nice agreement with the CMS data for several azimuthal
correlations and their ratios in the large Y regime. The BFKL and DGLAP
expressions for the coefficients Cn, in the two variants of BLM setting, are
given in Eqs. (4), (6), (12) and (13) of Ref. [3]. We note that, in our way to
implement the BLM procedure (see [21]), the final expressions are given in
terms of αs in the MS scheme, although in one intermediate step the MOM
scheme was used.

3. Numerical analysis

We present our results for the dependence on the rapidity separation
between the detected jets, Y = yJ1 − yJ2 , of ratios Rnm ≡ Cn/Cm between
the coefficients Cn. Among them, the ratios of the form of Rn0 have a
simple physical interpretation, being the azimuthal correlations 〈cos(nφ)〉.
In order to match the kinematic cuts used by the CMS Collaboration, we
will consider the integrated coefficients given in Eq. (13) of Ref. [20] and their
ratios Rnm ≡ Cn/Cm. We will take jet rapidities in the range delimited by
y1,min = y2,min = −4.7 and y1,max = y2,max = 4.7 and consider Y = 3, 6
and 9. As for the jet transverse momenta, we make two asymmetric choices:
(1) kJ1,min = 35 GeV, kJ2,min = 45 GeV (Fig. 1) and (2) kJ1,min = 35 GeV,
kJ2,min = 50 GeV (Fig. 3 of Ref. [3]). The center-of-mass energy is fixed at
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√
s = 7 TeV. We can clearly see that, at Y = 9, BFKL and DGLAP, in both

variants (a) and (b) of the BLM setting, give quite different predictions for
the all considered ratios except C1/C0; at Y = 6, this happens in fewer cases,
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Fig. 1. Y -dependence of several ratios Cm/Cn for kJ1,min = 35 GeV and kJ2,min =

45GeV, for BFKL and DGLAP in the two variants of the BLMmethod (data points
have been slightly shifted along the horizontal axis for the sake of readability). For
the numerical values, see Table 1 of Ref. [3].
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while at Y = 3, BFKL and DGLAP cannot be distinguished with the given
uncertainties. This scenario is similar in the two choices of the transverse
momentum cuts. For a detailed discussion of the numerical tools used and
of the uncertainty estimation in our analysis, see Sections 3.2 and 3.3 of
Ref. [3].

4. Conclusions

In this paper, we considered the Mueller–Navelet jet-production process
at the LHC at the center-of-mass energy of 7 TeV and compared predictions
for several azimuthal correlations and ratios between them, both in full NLA
BFKL approach and in fixed-order NLO DGLAP. Differently from current
experimental analyses of the same process, we have used asymmetric cuts
for the transverse momenta of the detected jets. The use of symmetric
cuts for jet transverse momenta maximizes the contribution of the Born
term, which is present for back-to-back jets only and is expected to be large,
making therefore the effect of the BFKL resummation less visible. This
phenomenon could be at the origin of the instabilities observed in the NLO
fixed-order calculations of [22, 23]. Another important benefit from the use
of asymmetric cuts, pointed out in [19], is that the effect of violation of
the energy-momentum conservation in the NLA is strongly suppressed with
respect to what happens in the LLA. In view of all these considerations, we
strongly suggest experimental collaborations to consider also asymmetric
cuts in jet transverse momenta in all future analyses of the Mueller–Navelet
jet production process.
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