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Improving the personalization of recommendation methods is a hot
topic with wide application in real on-line commercial systems. One ma-
jor concern is that an algorithm that focuses too strongly on diversity is
putting recommendation accuracy at risk. Based on the method described
in [Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], we propose a more
personalized algorithm in which each user is assigned with a parameter for
the initial configuration setting and a parameter for the hybridization. We
find that each user has his/her optimal parameters which are very different
from user to user. We finally design a simple method to estimate users’ per-
sonalized parameters and the recommendation accuracy can be improved
accordingly.
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1. Introduction

The digital revolution brought to us what is known as “information over-
load”: there is too much information for a single individual to deal with.
As a result, nowadays there is hardly an e-commerce website without some
form of information filtering and recommendation service [1]. Thanks to the
Web 2.0 and Web applications, the recommender systems have been achiev-
ing rapid development. The recommender systems can help the user to find
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the useful items from the information ocean. The e-commerce development
has also greatly promoted the advantages of recommender systems, such
as the Amazon.com and eBay.com. Accurate and efficient recommendation
algorithm can help us analyze the potential consumption trends of users,
and eventually provide an effective personalized service for them. Collabo-
rative filtering (CF) is the most popular applied technology in the recom-
mender systems [2–4]. However, the classical CF algorithm only takes into
account the effect of similar users or items which will lead to the recommen-
dation results become more and more similar for each user. In addition, the
content-based [5], trust-aware [6], social impact [7, 8] and tag-aware [9] are
also frequently used recommender technologies.

Recently, the fruitful achievements of complexity theory, especially some
physical methods such as mass diffusion [10] and heat conduction [11], have
attracted an increasing attention from both computer science and physical
community. Researchers use the bipartite network to recommend and solve
various fundamental questions in both research and application [12–16]. In
fact, the mass diffusion algorithm is a random walk process, which has high
accuracy but low personality and diversity, the heat conduction method has
low accuracy but high personality and diversity. In Ref. [17], the authors
proposed a hybrid method to combine the mass diffusion and heat conduc-
tion which solve the apparent diversity-accuracy dilemma of recommender
systems. In other words, the recommender systems will not only consider
to recommend the popular objects, but also the niche objects, which in-
dicates the personality and diversity play an important role in evaluating
recommender systems.

After [17], many different methods are proposed to achieve even better
recommendation performance. For example, the preferential diffusion [18]
and the biased heat conduction [19] has been designed to yield a higher
accuracy and larger diversity compare to the method in [20]. Moreover,
the network manipulation has been shown to effectively solve the cold-start
problem in recommendation [21,22]. To enhance the efficiency of the recom-
mendation process, the method to extract the information backbone (min-
imum structure) from on-line system is also designed [23]. Very recently,
the long-term influence of the recommendation methods on the user–item
bipartite network evolution is studied [24]. It is found that many person-
alized recommendation methods have reinforced the effect on item degree
distribution.

Generally speaking, personalization is crucial to generate diverse rec-
ommendation. An ideal way for recommendation is that to each user has
assigned his/her most suitable recommendation algorithm [1]. In this way,
the recommendation results will be closer to his/her real taste. However, in
current recommendation design, all the users are forced to use the same algo-
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rithms. To solve this problem, we proposed a personalized recommendation
algorithm based on the hybrid method in [17]. Specifically, we assign to each
user a parameter for the initial configuration setting and a parameter for the
hybridization. We find that each user has his/her optimal parameters which
are very different from user to user. We finally design a simple method to
estimate users’ personalized parameters and the recommendation accuracy
can be improved accordingly.

2. Datasets and metrics

To test performance of our algorithm, we use two benchmark datasets.
The MovieLens (http://www.grouplens.org/) data contains real data of
100, 000 ratings from 943 users on 1, 682 movies. The level of rating ranges
from 1 to 5, as from worst to best. For the recommendation purpose, we
are doing filtering process by considering the link with the rating more
than 3. After the coarse gaining process, the data contains 82, 520 user–
object pairs including 943 users and 1, 682 items. The Netflix data is ran-
dom sampling of the whole records of user interaction in the Netflix website
(http://www.netflixprize.com). It has 10, 000 users, 6, 000 movies, and
824, 802 user–movie pairs. After the same link filtering like MovieLens data,
there are 701, 947 links left. To test the recommendation algorithm perfor-
mance, the data is randomly divided into two parts: the training set ET

containing 90 percent of the data and the probe set EP containing 10 per-
cent of the data. The training set is treated as known information, while no
information in probe set is allowed to be used for the training.

The recommendation algorithms should consider accuracy as the most
important aspect for evaluating performance. A good algorithm should pro-
vide accurate recommendations which means each user can find what they
like in the top of an ordered queue of all its uncollected objects. Here, Rank
Score [16, 22] is to measure the ability of a recommendation algorithm to
build a good ordering of items that matches the user’s preference. For a
specific user, the recommendation system can produce a ranking list of all
his uncollected objects. We measure the rank of each user–items link in a
probe set in the ranking list of this user. For example, an active user ua
who has 1, 000 uncollected items, and the item ib is at 10th place from the
top of the list, so the place of this item is RSab = 10/1000. We say the rank
score of this item is 0.01. Averaging all links in the probe set, we obtain the
overall ranking score RS which can be used to measure the recommendation
algorithm’s accuracy. Obviously, the smaller RS we can obtain, the better
our proposed algorithm is

RS =
1

|EP|
∑
ab∈EP

RSab . (1)
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Since real users usually consider only the top part of the ordered recom-
mendation list, we also adapt two practical accuracy metrics to consider the
number of a user’s links in the probe set contained in the top-N places,
namely Precision and Recall [20]. For a specific user ua, the precision of
recommendation, Pa(N), is defined as

Pa(N) =
da(N)

N
, (2)

where da(N) indicates the number of relevant items (namely the items col-
lected by ua in the probe set) in the top-N places of recommendation list.
We obtain the mean precision P (N) of the entire system by averaging all
users’ precision score. Besides Precision, Recall have similar function to eval-
uate accuracy of recommendation algorithm from other perspective. Given
a user ua, recall score REa(N) is defined as

REa(N) =
da(N)

Na
, (3)

where da(N) indicates the number of relevant items (namely the items col-
lected by ua in the probe set) and Na is the number of items user a collects
in the probe set. Averaging all users’ Recall Score, we obtain the mean recall
score RE(N) of the entire system.

3. User heterogeneity and personalized parameter

A recommendation system can be described by a bipartite network
A(U,M), denoting the user set U = u1, u2, u3, ..., un, and the item set as
M =m1,m2,m3, ...,mq. An∗q is the adjacency matrix, where the element
Aiα = 1 if user i has collected item α, and Aiα = 0 otherwise.

There are many recommendation algorithms, the important task of a
recommender system is to generate an ordering list of the specific user’s
uncollected items. In this paper, we mainly consider the mass diffusion
algorithm (Mass), heat conduction (Heats) and the hybrid algorithms of
these two algorithms (Hybrids). Firstly, we briefly introduce them.

In Mass, the algorithm works by assigning one unit of resource to each
item denoted by the vector f (where fα is the resource possessed by itemMα),
and then the redistribution is represented by f̃ = Wf , where W is the re-
source allocation matrix, and the key factor to take advantage of the dif-
fusion processes, and kβ =

∑n
l=1 alβ and kj =

∑m
γ=1 alγ denote the degree

of item β and user j, respectively. The recommendation list of uncollected
items is sorted by descending order of f iα. In fact, the process of mass diffu-
sion is equivalent to resource allocation, which is also a three-step random
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walk process. For example, for a target user i, the mass diffusion process
is shown in Fig. 1 (a). The recommendation list for user i is obtained by
ranking all his/her uncollected items in decreasing order according to their
amount of gathered resources after the diffusion

Wαβ =
1

kβ

n∑
j=1

ajαajβ
kj

. (4)

Another algorithm is Heats algorithm, which works similarly to Mass al-
gorithm. Heats algorithm follows heat diffusion across the user–item bipar-
tite network. In this algorithm, the collected by users items are considered
as high temperature resources, otherwise the cold sources are uncollected
items. The higher temperature of the item, the higher score it has. The
heat conduction process is represented by

Wαβ =
1

kα

n∑
j=1

ajαajβ
kj

. (5)

Similarly, Heats also redistributes resources which can be also random
walk process. But the difference between heat conduction process and mass
diffusion is in diffusion process because heat conduction redistributes re-
source by averaging its temperature of nearest the neighborhood. The Heats
process is presented in Fig. 1 (b).

Fig. 1. (a) Mass algorithm and (b) Heats algorithm corresponding to Eqs. (4)

and (5). The specific user is shown by the shaded circle, and objects are squares.
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The originally Hybrids algorithm proposed in [17], combining Mass and
Heats method by incorporating the hybridization parameter λ into the tran-
sition matrix normalization is

f̃ = λ
fMass

Max(fMass)
+ (1− λ) fHeats

Max(fHeats)
, (6)

where the parameter λ = 0 gives the fully Heats algorithm and λ = 1 gives
the Mass algorithm. When λ increases from 0 to 1, the Hybrids algorithm
will change from Heats to Mass. This Hybrid algorithm was shown to be an
effective way to solve the accuracy–diversity dilemma [24]. With the hybrid
parameter, the Hybrids algorithm can be chosen whether to recommend
more popular items or unpopular items.

A heterogeneous initial resource distribution Mass algorithm also pro-
posed in [24] which identifies the initial resource of item i is proportional
to kθi . So the initial resource matrix of this method can be presented as
fα = aijk

θ
i , where parameter θ is a negative number. It shows that this

method can improve the accuracy of the recommendation compared to the
Mass diffusion process.

In Hybrids method and heterogeneous initial resource distribution Mass
algorithm, all the users are assumed to have the same parameter λ as in
Hybrids algorithm and the same θ in heterogeneous initial resource distribu-
tion Mass algorithm. However, this assumption is not true in real case since
some users may prefer popular items, while others may like the high quality
items more. Thus, we apply the hybrid method with heterogeneous initial
resource distribution method to the individual level. For example, each user
can adjust his/her own personalized hybrid parameter λa and personalized
initial resource parameter θb for Wαβ to get the optimal recommendation
for him/her. The optimal λa and θ of user i can be assigned when the rank
score is minimized. Table I shows the recommendation metrics results of
rank score, precision, and recall when each user is obtained with the optimal
λ∗i and θi (which refer to personalized hybrid parameter and personalized
initial resource parameter).

The results in Table I indicate that the recommendation accuracy can
be significantly improved. We find the optimal personalized parameter al-
gorithm performs better in all metrics mentioned. Take MovieLens for
example, with comparative performance of OCoHybrids method on Rank
Score RS, metrics including Precision P (50) and Recall R(50) with the
CoHybrids method can have an enhancement of 9.01%, 4.09% and 7.9%.
As for Netflix dataset, OCoHybrids method also outperforms in terms of
RS, P (50) and R(50) the previous CoHybrids method with enhancement of
10.8%, 0.9% and 2.8%, respectively.
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TABLE I

Optimal algorithm performance for MovieLens data and Netflix data, in terms of
Precision and Recall are corresponding to L = 50. HMass algorithm is Mass dis-
tribution process with heterogeneous initial resource. OMass algorithm refers to
Mass algorithm Heat conduction process method. OHybrid refers to Hybrids algo-
rithm with personalized λi for each user. CoHybrids algorithm refers to Hybrids
algorithm with overall optimal initial resource parameter θ and overall optimal
λ. OCoHybrids algorithm is improved CoHybrids method combining the optimal
personalized initial resource parameter θi and optimal personalized λi. The pa-
rameters (ranging in the interval [0, 1] for λ with step 0.05, and [−5, 5] for initial
resource parameter with step 0.1, for MovieLens data; optimal θ = −0.8 in HMass,
CoHybrids method, optimal λ = 0.45 in Hybrids and CoHybrids). Each number is
obtained by averaging over 10 runs with independently random division of training
set and probe set.

Algorithm RS P (50) R(50)

MovieLens

HMass 0.091843 0.074889 0.503311
OMass 0.086254 0.0772 0.526511
Hybrids 0.083672 0.077837 0.51726
OHybrids 0.077818 0.079576 0.534584
CoHybrids 0.08084 0.07807 0.510147
OCoHybrids 0.073556 0.081379 0.554477

Netflix

HMass 0.051843 0.053099 0.432153
OMass 0.045742 0.054357 0.453447
Hybrids 0.050999 0.052088 0.431291
OHybrids 0.047065 0.05224 0.431695
CoHybrids 0.047842 0.053183 0.433328
OCoHybrids 0.04266 0.0537 0.446098

From the above ideal situation of our algorithm, we want to first consider
the property of users’ optimal personalized hybrid parameter λ∗i . In Fig. 2,
we show the distribution of λ∗i in MovieLens and Netflix. In MovieLens,
there is one peak close to λ∗i = 0.5, while other λ∗i spread over the value
from 0 to 1. In Netflix, there is also an obvious peak in λ∗i = 0.9 and other
λ∗i are distributed between 0 and 1. These results indicate that users have
quite different personalized hybrid parameters in real systems. Secondly,
we further move to investigate the property of users’ optimal initial resource
parameter θ. We also find out the difference of users’ optimal initial resource
parameter. So if we use the same hybrid parameter and initial resource pa-
rameter for all users, many users cannot receive the best recommendations.

In order to design a method to predict users’ two optimal personalized
parameters (refer to initial resource and hybrid), we study the correlation
of λ∗i and θi with each users’ ranking score. We found that the users’ per-
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Fig. 2. The first two MovieLens subfigures show the distribution of θi and λi. Insets
of two Netflix subfigures also show the distribution of θi and λi.

sonalized parameters are different, but their taste is more or less lasting in
the long period. We design a new method to detect predicted users’ optimal
personalized parameters. In Section 2, we divided dataset into two parts:
a training set and probe set. Because the probe set is containing an un-
known link for test the algorithm performance, the training set can be used
to identify personalized parameters. Specifically, we divided the training set
into two parts which are corresponding to T-training set and T-probe set.
The ration of these two parts is 9 : 1. By tuning these T-training set and
T-probe set, it is found the optimal personalized parameter for this dividing
data set (refer to original training set). In order to predict users’ personal-
ized parameters, it is useful to normalize noise of dataset by dividing more
times to have normalized personalized parameters which are closer to opti-
mal personalized parameter. We choose dividing the training set 100 times
to get 100 times personalized parameters for each user depending on each
user’s minimal ranking score each time.

We also consider each user having several ranking scores which are very
similar. Thus, normalizing the personalized parameters is necessary. As
expected, the personalized λi and personalized θi we obtained are similar
to the optimal personalized parameters. Therefore, in the next section, we
will propose a strategy to assign to each user a suitable personalized hybrid
parameter λi and personalized initial resource parameter θi based on tuning
training set.



Measuring On-line Users Preference and Personalized Recommendations 117

4. Recommendation with personalized algorithm

According to the analysis above, we propose a personalized initial re-
source and hybrid algorithm (PIHP) as

f̃i = λi
fMass

Max(fMass)
+ (1− λi)

fHeats

Max(fHeats)
, (7)

where λi is the users’ personalized hybrid parameter collected by the user’s
minimal ranking score. To improve the feasibility of the method, PIHP ob-
tained the λi only by training set. We divide the original training set into
new training set and probe set 100 times. The ratio of these two sets is also
9 : 1. We consider the heterogeneous initial resource distribution [24] which
can identify the initial resource of item i proportional to kθi . This param-
eter also can be personalized by the same method as personalized hybrid
parameter obtained method. Figures 3 (a), (c) show the positive correla-
tion of optimal θi and personalized θi in two benchmark data MovieLens
and Netflix, and Figs. 3 (b), (d) illustrate the correlation of optimal λi and
personalized λi.

Fig. 3. The first two MovieLens subfigures show the correlation of optimal θi and
personalized θi, and also for λi. Insets of two Netflix subfigures also show correla-
tion with optimal parameters and personalized parameters, respectively.

The results for several algorithms are given in Table II. We find the
PCoHybrids algorithm performs better in all metrics mentioned. Take Movie-
Lens for example, with comparative performance on Rank Score RS, metrics
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including Precision P (50) and Recall R(50) in the PCoHybrids method can
have an enhancement of 2.07%, 3.3% and 4.5%. As for Netflix dataset,
PCoHybrids method also outperforms in terms of RS, P (20) and R(20) the
previous CoHybrids method with enhancement of 2.01%, 1.6% and 1.1%,
respectively. Actually, the setting of personalized parameters is more sig-
nificant for individuals’ satisfactions and also the overall accuracy is still
improved. In optimal personalized parameters situation, we still have some
improving space to help people attain more satisfaction from personalized
recommendation system.

TABLE II

Algorithm performance for MovieLens data and Netflix data, in terms of Precision,
and Recall are corresponding to L = 50. The parameters ranging in the interval
[0, 1] for λ with step 0.05, and [−5, 5] for initial resource parameter with step 0.1;
for MovieLens data, optimal θ = −0.8 in HMass, CoHybrids method, optimal
λ = 0.45 in Hybrids and CoHybrids. Each number is obtained by averaging over
10 runs with independently random division of training set and probe set.

Algorithm RS P (50) R(50)

MovieLens

HMass 0.091843 0.074889 0.503311
PMass 0.091328 0.075186 0.50431
Hybrids 0.083672 0.077837 0.51726
PHybrids 0.082098 0.078855 0.527373
CoHybrids 0.08084 0.07807 0.510147
PCoHybrids 0.079165 0.080742 0.534675

Netflix

HMass 0.051843 0.053099 0.432153
PMass 0.050948 0.053134 0.431401
Hybrids 0.050999 0.052088 0.431291
PHybrids 0.050659 0.052448 0.434766
CoHybrids 0.047842 0.053183 0.433328
PCoHybrids 0.04688 0.054089 0.438163

5. Conclusion

Generally speaking, there is no optimal recommendation algorithm but
most suitable recommendation algorithm for a user. Based on this, we pro-
posed a personalized recommendation algorithm. Each user has assigned
his/her personalized parameters according to his/her historical choices. We
find that users personalized parameters are indeed different from each other.
After introducing the personalized parameters, the recommendation accu-
racy is found to be improved.
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In practice, an applicable and feasible way to implement our method
is building an open recommender system, where users can help themselves
to find their best experienced algorithm (or parameter). For example, the
system can set a bar controlling the parameter of the algorithm on the
website. By adjusting the parameter setting, the users can obtain popular
(hot) or niche (novel) items. Gradually, the whole system will be guided to
better and better state. In this sense, we argue that our work is of good
contribution from practical point of view.
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