
Vol. 9 (2016) Acta Physica Polonica B Proceedings Supplement No 1

RESCALABLE, REPLAYABLE MAPS GENERATED
WITH EVOLVED CELLULAR AUTOMATA∗

Daniel Ashlock, Laura Bickley

Department of Mathematics and Statistics, University of Guelph
50 Stone Road East, Guelph, Ontario N1G 2W1, Canada

(Received February 29, 2016)

A fashion-based cellular automata is one whose updating rule follows
the form of an ecological competition model. The rule for the automata
is specified by a square matrix with entries quantifying the influence each
state has on each other when they both occur within a neighborhood. Be-
cause they preserve areas containing a single cell state, these rules are well
able to specify automata that rapidly transform a random initial condition
into a map appearing as a collection of caverns. Because the automata
acts in a purely local fashion, it is valuable for generating collections of
maps with similar look-and-feel, but different details, enabling automatic
content generation and replayability in video games. This study extends
an earlier study, examining new fitness functions and studying reusabil-
ity, scalability, and the impact of parameter tuning for this type of cellular
automata for automatically designing level maps. A representation for evo-
lutionary computation is morphable if convex combinations of instances of
the representation are instances of the representation. The fashion-based
rules, being specified by real values matrices, are morphable. The ability
to produce new, more complex maps by exploiting morphability is also
explored.

DOI:10.5506/APhysPolBSupp.9.13

1. Introduction

This study builds on earlier work using a cellular automata to design
level maps resembling a network of caverns [1] as well as an initial parame-
ter study on the type of rules used in this study [2]. These level maps are
used in video games. This study examines additional fitness functions for
the system for automatic content generation (ACG) developed in the earlier

∗ Presented at the Summer Solstice 2015 International Conference on Discrete Models
of Complex Systems, Toronto, Ontario, Canada, June 17–19, 2015.

(13)

14 D. Ashlock, L. Bickley

studies as well as examining the morphability of the evolved rules. Morphing
consists of transforming one rule into another using a continuous transfor-
mation parametrized by the spatial coordinates of the map. A requirement
for morphing is that convex combinations of CA rules also be CA rules, a
property that the evolvable representation used in this study has.

Cellular automata instantiate discrete models of computation. A cellular
automaton has three components:

1. A collection of cells divided into neighborhoods of each cell;

2. A set of states that cells can take on;

3. A rule that maps the set of possible cell states of a neighborhood to a
new state for the cell with which the neighborhood is associated.

In practice, CA are a type of discrete dynamical systems that exhibit
self-organizing behavior. When a cell population is updated according to
local transition rules, it can form complex patterns. The updating may be
synchronous, as it is in this study, or asynchronous. CA are potentially
valuable models for complex natural systems that contain large numbers
of identical components experiencing local interactions [3, 4]. This paper
applies them to create cavern-like level maps for games. Examples of the
technique are shown in figure 1. The automata in this study are called
fashion-based cellular automata because the updating rule may be thought
of as following the current fashion within each neighborhood.

Fig. 1. An example of an evolved cavern-like level map.

Rescalable, Replayable Maps Generated with Evolved Cellular Automata 15

2. Fashion-based cellular automata

We begin by defining fashion-based cellular automata. The automata in
this study have a cell space consisting of N×N or cells forN ∈{51, 101, 201}.
The smaller size is used when testing variations of the evolutionary algo-
rithm, the larger are used to generate maps for use of display. The left and
right and the top and bottom sides of the cell space are considered to be
adjacent making the cell space toroidal. The use of a toroidal grid of cells
means that the resulting pictures will tile correctly without edge artifacts if
tiling is required. The neighborhoods used by the automata are the von Neu-
mann neighborhoods with four neighbors of each cell. The number of cell
states used is n = 6, a number chosen in an earlier study [2]. The minimum
possible number of useful states is 2, a larger number of states permits a
larger and more flexible set of rules. Preliminary experimentation showed
that numbers of states beyond six did not yield materially different results.
The automata rule is parametrized by an n× n real matrix M , indexed by
cell states, with entry Mi,j giving the score a cell with state i gets if it has
a neighbor in state j.

The automata is updated synchronously. The updating rule computes
the score of each cell, based on its state and the states of its neighbors.
The pairwise score, according to the entries of the matrix M , for a state
and each of its neighbors is summed to compute each cell’s score. Each cell
then either stays in the same state, if its score is at least as high as those
of its neighbors, or adopts the state of its highest scoring neighbor. This
is thought of as “following the fashion” of the neighborhood. Fashion-based
automata leave homogeneous regions homogeneous, a property that makes
the space of rules rich with automata that generate cavern-like levels.

When rendering the automata as pictures, the states are translated into
colors as follows; 0 white, 1 blue, 2 green, 3 cyan, 4 yellow, 5 magenta.

2.1. Representation

With n = 6 cell states, the rule is given by a 6×6 real matrix that is spec-
ified by 36 real parameters. This is encoded by a vector of 36 real numbers
in the interval [0, 2] obtained by concatenating the rows of the matrix. Since
scoring is relative, the range of values is not a critical parameter. The evo-
lutionary algorithm uses two-point crossover, the default for our evolution
software. Point mutation is performed by modifying one of the numbers by
adding a uniformly distributed random variable in the interval [−ε, ε] with
ε = 0.1. If a value leaves the interval [0,2] as the result of mutation, a new
value is generated uniformly at random in the range [0, 2]. As the entries of
the vector are the rows of the matrix, contiguous groups of 6 entries specify
the scores one cell state obtains when matched against others.

16 D. Ashlock, L. Bickley

In order to evolve cavern-like maps, cell state zero is interpreted as empty
space and all other cell states are interpreted as full. The presence of multiple
“full” cell types leaves open the possibility of evolving maps with complex
terrain as in [5].

2.2. The evolutionary algorithm

Those unfamiliar with evolutionary algorithms may find a useful refer-
ence in [6]. The base evolutionary algorithm used to evolve rules operates on
a population of 360 rules with size seven tournament selection as the model
of evolution. This model of evolution incrementally updates the population
by selecting a tournament from the population, sorting it by fitness, and
then replacing the two least fit members of the tournament with copies of
the most fit. These copies are subjected to crossover and mutation and the
fitness of the resulting rules assessed. The algorithm is run for 10,000 such
population updatings, called mating events, with summary statistics saved
every 100 mating events. Mutation consists of between 1 and MNM point
mutations with the number of point mutations selected uniformly at ran-
dom. The symbol stands for maximum number of mutations. The default
value used is MNM= 7. A parameter study varies the population size, num-
ber of mating events used, the MNM parameter, and the tournament size
from the values used in the base algorithm is performed.

2.3. Fitness function

The fitness function used in the first study to judge the quality of an
automata rule M is

f(M) =
Z

1 + |1− 2U |
, (1)

where Z is the number of cells in state zero in the connected empty compo-
nent of the map including the middle cell of the map and U is the fraction
of empty cells. If the center cell is not in state zero, this function yields
a fitness of zero. This function rewards a large connected network of open
spaces and a map that is 50% full. We will briefly examine the impact of
changing this function to

f(M) =
Z

1 +
∣∣1− U

α

∣∣ , (2)

where α is the desired fraction of full states, to change the density of the
resulting map. Note that low values of α make it easy to have a large
connected component of empty space, and so yield less challenging fitness
functions. Using the software from [2] with different values of alpha, it is
possible to obtain maps like those shown in figure 2. These are minor new
results using small modifications of the original fitness function.

Rescalable, Replayable Maps Generated with Evolved Cellular Automata 17

α = 0.25 α = 0.5 α = 0.75

Fig. 2. From left to right these maps were generated by rules that had target
densities of full cells of α = 0.25, 0.5, and 0.75.

This study examines a fitness function, new for cellular automata-based
maps, shown to be useful for decomposing the level map design problem [7].
This fitness function requires that openings to the cavern system be present
in a manner that permits the evolution of tiles that can be linked to form
larger maps. For this study, an opening in the middle of each side of the
map is required and it is required that there be an open passage joining each
pair of openings. If either of these constraints are violated, the automata
rule receives a fiat fitness of zero. Otherwise the fitness of the rule is the
average of the six distances between pairs of openings, computed with simple
dynamic programming.

3. The parameter study

A total of 161 experiments were performed in which various parame-
ters were modified to check their impact on fitness. These parameters were
tournament size, number of mating events, population size, and MNM. The
population size was changed in two batches. For the first batch of popu-
lation size experiments, population size was set to 60, 360, 370, 400, 500,
1000, 2000, 3000, 4000, 5000, and 10000. Then, for each of these values, the
MNM value was changed from 1 to 12, resulting in 120 experiments being
run. For the second batch of population size experiments, population size
was assigned values of 50, 100, 200, and 300. Then, for each of these values,
the MNM value was set to 1, 4, 7, 10 and 12 resulting in 20 experiments
being run.

For the next batch of experiments, tournament size and mating events
were changed. For tournament size, the values tested were 5, 7, 8, 10, 15, 20,
25 and 30 resulting in 8 experiments being run. For the mating events, the
values that were tested were 5000, 10000, 11000, 12000, 13000, 14000, 15000,
20000, 30000, 40000, 50000, 100000, and 1000000 resulting in 13 experiments
being run. A partial visualization of these results is given in figure 3.

18 D. Ashlock, L. Bickley

Fig. 3. Shown are inflected box plots for the impact of mutation rate (top left),
population size (top right), and duration of evolution (bottom) on the final fitness
of the population.

The parameter study shows that a small population size and a low mu-
tation rate are both favored. The provision of additional mating events,
extending the time of evolution, had a small beneficial effect that seems to
top out at 30,000 mating events. These results will inform future experi-
ments.

Rescalable, Replayable Maps Generated with Evolved Cellular Automata 19

4. Reusability and rescalability

The purely local character of the updating of cellular automata means
that changing the initial conditions can yield similar but distinct states of the
automata. Figure 4 shows how this property can be exploited. An automata
evolved to maximize average pairwise distances between openings was re-
rendered eight times with different initial conditions generated uniformly at
random. Similarly, making large maps requires only the use of a larger sized
array of cells as demonstrated in figure 5. The matrix that specifies the rule
of this automata is

M =

0.910946 0.607819 0.613347 0.941688 0.793816 0.866123
0.820984 0.920274 0.78518 0.696141 0.700188 0.19004
0.854375 0.197165 0.451753 0.318452 0.404226 0.567101
0.0454479 0.0755465 0.5242 0.324387 0.357319 0.309198
0.389031 0.64076 0.325492 0.775472 0.924891 0.671959
0.198149 0.502077 0.886719 0.63963 0.487097 0.710947

 .
(3)

Fig. 4. During evolution of the automata rules a single, fixed set of initial condi-
tions was used. The eight renderings of automata shown above are the result of
generating new, random initial conditions. This demonstrates the ability of the
rules to be reused to generate multiple maps.

These results show that maps with similar characteristics but very dif-
ferent details can be generated using a single rule. Scalability of these rules
also comes for free, again because of the locality of the action of the rule.
If a much larger cell space is used then a much larger map is obtained. We

20 D. Ashlock, L. Bickley

note that with random initial conditions, it is sometimes necessary to move
the entrance a few pixels or to use a repair operator of the sort described in
Section 5.2.

Fig. 5. This is an example of a 400×400 cell rendering of a map built with the same
rule used in figure 4. It demonstrates the rescalability of automata-based maps.

5. Conclusions and future directions

Specifying evolvable rules with a real-valued competition matrix is a
novel method of specifying rules. Thus far, this study and the one it extends
have used this representation to create cavern-like maps, a narrowly focused
goal related to video games. There are a large number of other potential
applications including ecological modeling, the domain that inspired the
application. Many of the advantages of using a cellular automata to generate
maps, rescalability and reusability, come from the local nature of cellular
automata. In the remainder of this section, we will look at properties that
arise directly from the real valued nature of the encoding.

5.1. Exploiting morphability

The local nature of automata updating, quite useful when replayability
and scalability are issues, nevertheless leads to a problem with relative uni-
formity of appearance. In this section, we will find a technique for avoiding
the relative uniformity of appearance.

Rescalable, Replayable Maps Generated with Evolved Cellular Automata 21

As noted in the introduction, a representation for evolution is morphable
if convex combinations of instances of the representation are instances of the
representation. The real-valued matrices used to specify fashion-based cellu-
lar automata clearly have this property. In this section, we will demonstrate
a use for morphability and speculate about another.

A morph from the rule specified by matrix M1 to the rule specified by
matrix M2 is the line segment in rule space given by

(1− λ)M1 + λM2 , 0 ≤ λ ≤ 1 .

A morph is a linear space of rules, and our second conjectural application, re-
evolvability, will attempt to exploit this in a future study. Suppose, however,
that we permit the rule used to update the automata to vary spatially,
deriving the value of λ to vary based on the position within the cell matrix.
Then, we can obtain results like those shown in figure 6.

Fig. 6. The top two maps permit the morphing parameter to operate radially, the
bottom two laterally.

22 D. Ashlock, L. Bickley

The maps in figure 6 were selected by examining the 435 possible pairs
of morphs between distinct best-of-run (most fit) rules from 30 runs of the
baseline algorithm. Two sorts of morphs were performed, radial and lateral.
The upper panels of the figure are radial morphs, where λ is zero at the
center of the picture and one in the corners, the lower panels are lateral
morphs where λ is the fraction of the distance across the picture in the
horizontal direction.

Some of these resulting maps are empty in the regions where λ is not
near one or near zero and many of the maps exhibit a solid, impassible zone
even more severe than the one in the bottom left panel of figure 6. The left
radial morph is subtle — features appear near the center of the picture that
do not appear elsewhere, while the right radial morph shows a large change
in the character of the caverns from the middle to the edge of the diagram.

5.2. Dynamic programming repair

The use of morphing substantially improves the variety of map types
available to a game designer but there is also the issue of compatibility of
the rules. The fact that the number of pairs of rules, and hence morphs, is
a quadratic function of the number of rules means that there are typically
many pairs to examine and so acceptable morph-based maps can usually be
located. On the other hand, the barrier-like feature in the lower left example
in figure 6 is fairly common as are mostly-empty maps. This suggests that
a repair technique might be a viable alternative.

Dynamic programming is already used to measure unobstructed dis-
tances between openings during fitness evaluation. If we have a map pro-
duced by morphing that does not obey the connectivity constraint, that all
openings be mutually accessible, then a path with the minimal number of
unobstructed squares between pairs of openings could easily be located and
then those minimal obstruction sets cleared. This sort of repair operator
would be especially useful when the number of obstructions to be cleared is
minimal. More complex, and possibly more effective, suggestions appear in
the next section.

5.3. Enhancing morphability

The advantage of morphing between a pair of rules is that it opens up
a wider range of possible appearances for level maps, potentially solving
the issue of lack of long-range variability in appearance. The down side of
morphing, at least thus far, is that many of these morphs are not usable
maps. There are at least two possible ways to address this problem.

Rescalable, Replayable Maps Generated with Evolved Cellular Automata 23

The first method for avoiding unusable morphs is to evolve pairs of rules
that are directly tested, during fitness evaluation, for their ability to gen-
erate useful morphs. There is a potential danger here: morphing from a
cellular automata to itself. This would generate a morphable pair of rules
with a single local appearance. Different matrices can specify the same rules
and so, in addition to simultaneously evolving two automata rules, the fit-
ness evaluation must include provisions to avoid the large local optima that
involves evolving two essentially duplicate rules. The presence of multiple
states representing filled-in cells provides an easy way to do this — simply
require that the density of types of filled states be distinct in areas largely
governed by each of the automata rules.

The second method involves the use of fertility testing. Here, we generate
a large collection of automata and test their pairs for viable morphs. The
automata are then ranked by the number of other automata rules with which
they produced viable morphs. The highest scoring automata in this sense
have an enhanced probability of producing viable morphs. These could be
used directly or might be an excellent starting population for the evolution
of morphable automata.

5.4. The potential of re-evolvability

The space in which optimization takes place to find good cavern-gener-
ating cellular automata rules is 36 dimensional. Suppose that, instead of
evolving all thirty six parameters, we choose a small number of example
maps with desirable appearances. We then evolve a set of weights for these
examples. This permits us to search a lower dimensional space constructively
enriched with good rules. To avoid the potential or re-evolving one of the
original rules, there must be a minimum possible weight — ensuring some
contribution to the final rule by all the example rules. The notion of re-
evolvability is quite natural for cavern maps but could be applied to any
morphable representation.

When applied to cavern maps, re-evolution would not only permit a
more efficient evolutionary search in a lower dimensional space, but would
also permit additional control of the appearance of the maps. It is quite
likely that the appearance of re-evolved maps would share some of their
characteristics with the examples.

REFERENCES

[1] L. Johnson, G.N. Yannakakis, J. Togelius, Cellular Automata for Real-time
Generation of Infinite Cave Levels, in: Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, PCGames ’10, ACM, New York,
NY, USA, 2010, pp. 10:1–10:4.

24 D. Ashlock, L. Bickley

[2] D. Ashlock, Evolvable Fashion Based Cellular Automata for Generating
Cavern Systems, in: Proceedings of the 2015 IEEE Conference on
Computatational Intelligence in Games, IEEE Press, Piscataway NJ, 2015,
pp. 306–313.

[3] E. Sapin, O. Bailleux, J. Chabrier, Complex Systems 11, (1997).
[4] S. Wolfram, Physica D 10, 1 (1984).
[5] D. Ashlock, C. Lee, C. McGuinness, IEEE Comput. Intell. Magazine 2, 26

(2011).
[6] D. Ashlock, Evolutionary Computation for Opimization and Modeling,

Springer, New York 2006.
[7] D. Ashlock, C. McGuinness, Decomposing the Level Generation Problem

with Tiles, in: Proceedings of CEC 2011, 2011, pp. 849–856.

http://dx.doi.org/10.1016/0167-2789(84)90245-8
http://dx.doi.org/10.1109/MCI.2011.940622
http://dx.doi.org/10.1109/MCI.2011.940622

	1 Introduction
	2 Fashion-based cellular automata
	2.1 Representation
	2.2 The evolutionary algorithm
	2.3 Fitness function

	3 The parameter study
	4 Reusability and rescalability
	5 Conclusions and future directions
	5.1 Exploiting morphability
	5.2 Dynamic programming repair
	5.3 Enhancing morphability
	5.4 The potential of re-evolvability

