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We study the parallel version of the Ising model, introduced as a model
for opinion formation. We first recall some results about the statistical
analysis of the serial and fully parallel version. We introduce the dilution
(or asyncronism) of the updating rule and show that the chequerboard
patterns that appear in the fully parallel version are unstable with respect
to dilution, but exhibit finite-size effects and long-lasting metastable states.
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1. Introduction

There is a quite large number of studies about opinion formation in
uniform societies [1]. Many such models adopt an approach similar to that
of the Ising model [2]. In such cases, one has two opinions, say A and B or
−1 and 1, and one is interested in the establishment of a majority (magnetic
phase transitions) or in the effects of borders, or in the influence of some
leader (social impact theory) [3]. This opinion space can be seen as the first
ingredient of these models.

The second ingredient is how to model the response to an external in-
fluence. It is common to classify the attitude of people (agents) as either
conformist or contrarian (also known as nonconformist). A conformist tends
to agree with his neighbours and a contrarian to disagree. It is also to map
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this attitude onto Ising terms: conformist agents correspond to ferromag-
netic coupling and contrarians to antiferromagnetic ones [1]. The presence
of contrarian agents in a society have been studied in models related to Ising
and the voter model [4–10].

The Ising model applied to opinion formation shares some characteristics
with the bootstrap percolation [11] and the voter model [12,13].

In bootstrap percolation, if the number of neighbours with an polarizing
opinion exceeds a fixed threshold, the individual under examination adopts
that opinion with a given probability p. The system is not symmetric under
the exchange of opinions. The main characteristic of bootstrap percolation,
to be discussed in the following, is the relation between metastability and a
system size. It can be shown [14] that the probability threshold pc depends
logarithmically on the system size, making numerical investigations aiming
at finding such a threshold hopeless. So, while the only stable asymptotic
state is, in principle, the uniform one, where everybody adopts the polarizing
opinion, for any finite site, one sees an apparent threshold, which is only a
metastable effect.

In the voter model, a site chosen at random takes one of the values
among the neighbouring spins. In the nonlinear voter model [15], this choice
depends on the number of adopters of each opinion. The linear version
always ends in a homogeneous phase, while the nonlinear one allows for
clusters of different opinions. The main difference with the Ising model is
the presence of absorbing states: once that (locally) an homogeneous phase
has been reached, there is no way for which a different opinion can arise,
while in the Ising model with noninfinite couplings (finite temperatures)
this can always happen. Thus, the nonlinear voter model can be considered
analogous to the Ising model with two-site and multiple-site (plaquette)
terms, where the term that couples the given site with all neighbours is
infinite (thus producing locally absorbing phases). This model is presented
in a companion paper [16], and the absorbing states were used in other
opinion models [9], where one can also find a discussion about which model
is more representative of a real society.

In the standard Ising model, metastability is also present. For instance,
stating from an uniform state with a small magnetic field promoting the
other phase, and for coupling values in the ferromagnetic phase, one can
observe long transients [17]. The transition is determined by the appearance
of a large enough droplet of the opposite phase.

The third ingredient is the connectivity, i.e., how the neighbourhood of a
given individual is formed. Traditionally, magnetic systems have been stud-
ied either on regular lattices, on trees or with random connections, whose
behaviour is similar to that of the mean-field approach. In recent years,
much attention has been devoted to other network topologies, and so re-
searchers have studied the Ising model on several kind of networks, from
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small-world [18] to scale-free [19] etc. In social terms, we can speak of “hubs”,
that have a great influence, “leaves” whose influence is minimal and long-
range interactions mediated by Internet for instance, or local ones in friends’
cliques.

With respect to the standard Ising model, there is no need to impose
a monotonous behaviour of the probability with the number of neighbours
adopting a given opinion: a hipster may decide to follow the minority. More-
over, the response character becomes a site variable, that may be different
from individual to individual. In these terms, the simple ferromagnetic Ising
model represents a uniform society of conformists with local symmetric in-
teractions.

The final element is the update scheduling, that may be completely asyn-
chronous, like in standard Monte Carlo simulations, or completely parallel,
like in Cellular Automata, or something in the middle. It is not clear which
scheme is the most representative. Human interactions are continuous, but
also clocked by days, elections, etc. An effect that is favoured by parallelism
is synchronization in the presence of complex dynamics. A macroscopic ir-
regular behaviour (chaos) implies a coherent, but irregular motion of many
elements.

There have not been many studies about the parallel Ising model [20–22],
and none (to our knowledge) that examined the role of partial asynchronicity,
which, however, is known to be able to induce phase transitions in deter-
ministic cellular automata [23].

In the fully parallel Ising model, for large values of J , a chequerboard
pattern, typical of the ferromagnetic phase but oscillating in time appears
in addition to the continuous phases of opposite magnetization, Fig. 1 (a).
A similar phenomenon is present for J < 0, where homogeneous oscillating

(a) (b) (c)

Fig. 1. Typical patterns in a 50×50 lattice, for J = 1, where white denotes negative
spins and black positive ones. (a) The three phases in the fully parallel Ising model
starting from a disordered configuration. (b) Stability (with fluctuations) of the
chequerboard pattern for small dilutions (d = 0.02). (c) Droplets growing for larger
dilutions (d = 0.045).
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phases appear for large enough values of |J |. Actually, for lattices of even
size, there is complete symmetry between the ferromagnetic (conformist)
phase and the antiferromagnetic (contrarian) one, as long as no external
field is imposed.

We are interested here in the stability of these “wrong phase” patterns.
In particular, we are interested in how their stability is lost for partially
asynchronous updating (see Fig. 1).

2. The Ising model with sequential and parallel dynamics

Our model is composed of spins (sites) si that can take two values (si =
−1, 1) on a lattice or graph defined by the adjacency matrix aij = 0, 1, where
aij = 1 (0) in the presence (absence) of a direct connection from site j to
site i (i.e., site j influences site i if aij = 1).

By changing the adjacency matrix, one can represent 1D, 2D and other
regular lattices or disordered networks, with fixed or variable connectivity.
The influence of neighbours is given by the normalized local field

hi =
1

ki

∑
j

aijsj ,

where ki =
∑

j aij is the connectivity of site i.
A configuration of spins is denoted as s = (s1, s1, . . . , sN ). The standard

Ising model is defined by a rescaled Hamiltonian H(s)

H(s) = −J
∑
i

sihi

for zero external magnetic field (the temperature is absorbed into the cou-
pling). The quantity J characterizes the “response” of spin si with respect
to local field hi. For J > 0, this response is ferromagnetic, and the spin si
tends to align to hi, for J < 0, the response is antiferromagnetic.

The equilibrium probability distribution Peq(s) of a configuration s is

Peq(s) =
exp(−H(s))∑
s′ exp(−H(s′))

=
1

Z
exp(−H(s)) .

The sum in the denominator in the middle expression is over all configura-
tions s′ and is the partition function Z. In practical cases, this probability
distribution is computed using Monte Carlo simulations or analytical com-
putations based on the Markov equation. We define the temporal probability
distribution P (s, t). We start from a given configuration s0. A time step
is divided into N tentative updates of each site. The update sequence may
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be random or ordered, the final distribution is independent of the kind of
updating as long as the resulting Markov process is irreducible or ergodic
(i.e., it allows going from any configuration to any other one in a finite
number of steps). The updating scheme may be important for the speed of
convergence.

For each time step, one chooses a single spin i and updates its value
(from si to s′i) using the transition probability (heat bath dynamics)

τ(s′i|s) =
exp (Js′ihi)

exp (Js′ihi) + exp (−Js′ihi)

=
1

1 + exp (−2Js′ihi)

=
1

2

(
1 + tanh

(
Js′ihi

))
. (1)

Notice that the updating rule does not depend on the previous value of the
spin si.

The heat bath dynamics obeys the detailed balance

τ(s′|s)
τ(s|s′) = exp

(
H(s)−H

(
s′
))
,

where s′ is defined to be equal to s except at the site under consideration
(s′j = sj for j 6= i, and s′i = −si).

The resulting Markov chain is

P

(
s′, t+

1

N

)
=

1

N

N∑
i=1

τ
(
s′i|s

) [
P (s, t) + P (s′, t)

]
.

This equation expresses the fact that in sequential updating, each spin has
in average the same probability 1/N of being chosen (either in order or
randomly); in each individual step, a given configuration s′ can only be
generated by the same configuration s′ or the one with an opposite value
on site i (s). The transition probability τ(s′i|s) in the standard Ising model
does not include the self-interaction of spin si with itself (which in the linear
model is in any case irrelevant).

If the couplings are symmetric (which, in our case, implies that are all the
same) and uniform (so that the adjacency matrix is irreducible), in the long
time limit P (s, t) tends to Peq(s) independently of the initial configuration
s0, i.e. the Markov process is ergodic. This is not assured for asymmetric
couplings (e.g., spin glasses).
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This model can be extended to the parallel case [20]. In this case, each
spin is updated using the same transition probability τ of Eq. (1). The
resulting Markov chain is

P
(
s′, t+ 1

)
=
∑
s

[
N∏
i=1

τ
(
s′i|s

)]
P (s, t) .

The equilibrium distribution P̃eq(s) is now

P̃eq(s) =
1

Z̃

N∏
i=1

cosh

∑
j

Jjsjhj

 .

These two distributions show different properties [21]. In particular, let
us consider, for instance, the case in which the lattice can be divided into
two sub-lattices, one updated with respect to the other. This is the case
for the two-dimensional square lattice, with nearest-neighbours connections.
The sequential dynamics actually couples these two lattices, so that the
asymptotic distribution is unique, while the parallel dynamics makes the
two sub-lattices independent.

Let us illustrate this more in detail, using the one-dimensional case. In
1D, one sub-lattice is composed of even sites at even times plus odd sites at
odd times, the other sites belonging to the other sub-lattice. For instance, in
one dimension, site si(t+1), with i and t even, only depends on sites si−1(t)
and si+1(t). In the case of sequential updating, only one site is updated and
the others are copied, and this latter operation couples the two sub-lattices.

For parallel updating, the two sub-lattices are however uncoupled, so
the Markov chain is no more irreducible and the asymptotic distribution
is not unique. In the case of broken symmetry (i.e., when the asymptotic
distribution is no more unique and small fluctuations in the initial condition
can lead to different asymptotic states), one sub-lattice can “go” into an
attractor (e.g., assume a given magnetization), while the other can assume
the opposite one. This is, for instance, the case of the Q2R model [24], which
is a microcanonical parallel version of the 2D Ising model. In this case, a
spin flips only if the local field hi is zero.

2.1. Metastable states

We investigate here the Ising model with nearest-neighbours interaction
on two-dimensional lattices N × N , with N even. Due to the form of the
heat bath dynamics, Eq. (1), in the fully parallel case the lattice decouples
into two noninteracting sub-lattices.
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In this case, for large couplings, there are three stable states: for J > 0,
one is formed with all spins that take value one, one with all spins taking
value −1, and two with a chequerboard alternation of −1 and 1s, where spins
flip at each time step. For J < 0, the homogeneous phases are oscillating and
the chequerboard ones are stable. With small couplings, the usual disordered
state appears, see Fig. 1. Due to the symmetry in changing the sign of J
and the value of all spins in one sub-lattice, in the following we only consider
the case J > 0.

We can distinguish these states by looking at the two-site correlation c
defined by

c =
1

2

∑
ij

sij (si+1,j + si,j+1) .

The quantity c takes value 1 for the homogeneous (all 1 or all −1 case),
it takes value −1 for the chequerboard pattern and zero for a disordered
pattern.

Starting with a random configuration, one can see in Fig. 2 (a) a typical
time evolution of the quantity c for small coupling (high temperature) and in
Fig. 2 (b) that for coupling values near the phase transition. In this case, the
correlation c oscillates among values near −1 and 1, i.e., the configurations
are near homogeneous ones (c = 1) or chequerboard ones (c = −1).
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Fig. 2. Time behaviour of correlation c for N = 16 and coupling (a) J = 0.40,
(b) J = 0.45.

An alternative view of this behaviour is illustrated in Fig. 3. In this
case, one computes the probability distribution of c over a single evolution
for a large time. For J = 0.40, the distribution is centred around c = 0,
i.e., disordered configurations dominate. For J = 0.45, one can see the
appearance of peaks near c = ±1, but the distribution is still unique, i.e.,
these states are metastable (as seen in Fig. 2 (b)). For c = 0.5, the symmetry
is broken and the asymptotic distribution is no more unique: repeating the
simulation, one observes either a peak near c = 1 or a peak near c = −1.
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Fig. 3. Probability distribution of correlation c for N = 32 and several values of J .
The distribution is computed over one evolution for 2×106 time steps after a tran-
sient of 104 time steps and using 100 bins. For J = 0.50, the probability distribution
is not unique (we show two simulations with different asymptotic distributions).
The jagged shape of the distribution is not due to low statistics: repeating the
simulation with larger running time the distribution remains the same.

2.2. The effects of asynchronism

Let us now introduce a partial asynchronism, that we call dilution, for
an even-side lattice. The control parameter is the fraction d of sites that
are not updated, retaining their old values. The dilution couples the two
sub-lattices.

We can extend the transition probability τd(s′|h, s, d) including the di-
lution probability so that

τd(s
′|h, s, d) =

{
τ(s′|h) with probability d ,
δs′,s otherwise ,

i.e.,

sij(t+ 1) =


1 with probability 1

2(1− d) [1 + tanh(Jhij(t)] ,
−1 with probability 1

2(1− d) [1− tanh(Jhij(t)] ,
sij(t) otherwise, i.e., with probability d .

(2)

The Master equation of the system is

P
(
s′, t+ 1

)
=
∑
s

(∏
i

τd
(
s′i|hi, si, d

))
P (s, t) .

The usual Ising model corresponds to d → 0 (say, 1 spin updated per
time step, neglecting the null moves), while the fully parallel version to
d = 1.
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The observables that depend only on single-site properties take the same
values in parallel or sequential dynamics [20]. The presence of the chequer-
board pattern however, is due to the strict parallelism of the model. By
diluting the rule, i.e., applying it only to a fraction d of sites, the chequer-
board pattern should disappear. This is indeed the case, but for low values
of the dilution d the chequerboard pattern is metastable.

We performed some experiments for N = 8, 16 and 32 and J = 1 (well
inside the magnetized phase). We started with a chequerboard configuration,
and updated it with a small dilution d. We monitored the correlation c and
defined the escape time te from the chequerboard “basin” the time after
which c becomes greater than zero. Due to the dilution, the effective time
has to be rescaled. We define a rescaled time step as the number of updates,
not counting the application of the identity of Eq. (2).

As shown in Fig. 4 (a), the distribution of the escaping time is expo-
nential, and therefore the standard deviation is equal to the average escape
time 〈te〉. Despite the large width of the distribution, the average exit time
is well-defined, as shown in Fig. 4 (b). From this last figure, one can see
that there is an apparent divergence of the exit times for d ' 0.038–0.04.
By plotting the exit times in logarithmic scale, as reported in Fig. 5 (a), one
can see that indeed the divergence happens for d = 0. However, there are
strong corrections to scaling, so that the divergence for pc = 0 is clear only
for N = 8 (the curve that approximates better a line for smaller values of p).
Already with N = 16, one should perform extremely long simulations for
putting this behaviour into evidence, and indeed in Fig. 5 (b), it is almost
impossible to distinguish the best linear behaviour in the log–log plot, for
the same computational time of N = 8. The vanishing of the threshold with
the system size is the reason for using small lattices.
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Fig. 4. (a) Histogram of the exit time te for N = 8, 1000 samples and d = 0.06.
The distribution is exponential. Here 〈te〉 ' 135. (b) Average value of the exit
time te for three values of N , 1000 samples.
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Fig. 5. Scaling behaviour of the correlation c with the dilution d for N = 8 (a) and
N = 16 (b). Statistics over 1000 repetitions.

This finite-size behaviour is similar to that of bootstrap percolation,
where larger lattices apparently show smaller critical threshold, but with
less pronounced finite-size effects. We shall investigate in more details the
relation between this metastability, arising by the coupling of the two sub-
lattices in the parallel model, and that due to the presence of an external
field in the standard serial model [17] in a forthcoming work.

3. Conclusions

We have presented some aspects related to the transition from the clas-
sical, serial Ising model to the parallel version. We have shown that the
chequerboard patterns are unstable with respect to dilution, but that the
transition shows finite-size effects and long-lasting metastable states, for
small lattices. Metastability have important consequences for models of opi-
nion formation: human groups are never infinite, and often of rather limited
size.

We analysed mainly the role of updating, which in social terms may cor-
respond to social interactions or political elections, for instance, which is a
kind of parallel updating with a dilution term that may be constituted by
people not participating to the choice. The chequerboard effect analysed
here may represent, in social systems, a kind of nonhomogeneity that may
persist for long times, according to the kind of updating. Thus, the main
results of this paper may be rephrased saying that a high rate of social con-
tacts (little dilution) promotes the maintenance of nonhomogeneity, which
tends to disappear if only a fraction of the population really participate to
the political debate and to elections. However, differently from the real case,
in our model, people belonging to this fraction are randomly drafted, while
in real life unsocial people tend to remain unsocial.
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