
Vol. 9 (2016) Acta Physica Polonica B Proceedings Supplement No 1

CELLULAR AUTOMATA AGENTS FORM PATH
PATTERNS EFFECTIVELY∗

Rolf Hoffmann

Technische Universität Darmstadt, FG Rechnerarchitektur
Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@rbg.informatik.tu-darmstadt.de

(Received February 29, 2016)

Considered is a 2D cellular automaton with moving agents. Each cell
contains a particle with a value = (color, marker), which can be changed
by an agent. The objective is to form a specific target pattern belonging
to a predefined pattern class. Areas of applications are the alignment of
spins, particles, or fibers. The target patterns shall consist of preferably
long narrow paths with the same color, they are called “path patterns”.
The quality of a path pattern is measured by the degree of order that is
computed by counting matching 3 × 3 patterns (templates). The markers
act like artificial “pheromones” that improve the solution’s quality (effec-
tiveness) and the efficiency of the task. The agents’ behavior is controlled
by a finite state machine (FSM). The agents used can perform 32 actions,
combinations of moving, turning and value setting. They react on the own
particle’s value, the value in front, and blocking situations. For a given set
of n × n fields near optimal, FSMs were evolved by a genetic algorithm.
The evolved agents are capable of forming path patterns with a very high
degree of order (90–100%). The whole multi-agent system was described
by cellular automata. The CA-w model (cellular automata with write ac-
cess) was used for the implementation of the system in order to reduce the
implementation effort and speed up the simulation.

DOI:10.5506/APhysPolBSupp.9.63

1. Introduction

The original idea for this research was to find artificial patterns by agents
which are to a certain extent creative and impressive from the artistic point
of view. As artistic patterns are difficult to evaluate, the more modest ob-
jective was to find patterns with a certain interesting or valuable structure.

∗ Presented at the Summer Solstice 2015 International Conference on Discrete Models
of Complex Systems, Toronto, Ontario, Canada, June 17–19, 2015.

(63)

64 R. Hoffmann

Experiments were conducted to find certain global patterns, like a black box
in the center of the field, or with a global symmetry. It turned out, until
now, that it is very difficult to find agents that can obey such strict global
requirements. Then, the objective was even more relaxed, namely to form
global patterns that obey intrinsic local rules (local matching patterns, tem-
plates). The 3×3 Moore-neighborhood was used for the templates. In order
to form more complex patterns, the neighborhood could be enlarged.

Practical effect can be taken out of this research when nano-structures
have to be constructed by nano-robots, or when focused energy is beamed
onto certain cells in order to change their physical state [1–5]. Further
applications can be seen, like forming mechanical, chemical, biological [6],
or computational devices with specific structures.

The task. Given is a field ofN = n× n cells with a border, n assumed to
be even. Each cell, except the border cells, contains a particle with a certain
value ∈ {0, 1, 2, 3}. The values {0, 1} shall represent the color white, and the
values {2, 3} shall represent the color black. Two values are used to represent
one color in order to make the task easier to solve. A value can be seen as
a tuple of binary values (c, s) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, where c ∈ {0, 1}
represents the color, and s ∈ {0, 1} represents an additional information,
the marker. Markers are data items stored in the whole environment which
act as a distributed global memory. Agents can change this data, either
to be used later by the same agent (as scratch-pad) or by another agent.
In our task, markers enlarge significantly the control space and support
communication between agents. E.g. an agent may change the value of a
marker from 0 to 1 signaling that the current site is already locally ordered.
Without using markers, the task can only be solved with a very low degree
of order, which is not much better than the order which appears at random.
Therefore, markers were introduced.

A given number k of agents is moving around in the field. An agent can
change the color and the marker at the site where it is situated on. Initially,
the particle values, the agents, and the agent’s directions are randomly dis-
tributed. The agents’ task is to construct a global state where a certain
target pattern appears that belongs to a predefined pattern class. In this
work, we define a path pattern class by preferably long paths of width = 1,
where all the cells of the neighboring paths have the opposite color or belong
to the border. The paths may have branches and may form loops (as shown
in Fig. 6).

The objective is to find a specific behavior (controlled by a finite state
machine (FSM)) for the agents which allows them to solve the task with a
high quality. The capabilities of the agents shall be constrained, e.g. the
number of control states, the action set, and the details of the perceived
environment.

Cellular Automata Agents Form Path Patterns Effectively 65

Why agents are used? What is the advantage to solve this task by
agents? Generally speaking, agents can behave in a very flexible, powerful
and coordinated way because of their intelligence and their specific sensors
and actuators. Important properties that can be achieved by agents are:

Scalability. The problem can usually be solved with a variable number
of agents, and faster with more agents in a certain range.
Tuneability. The problem can be solved faster or with a higher quality
by increasing the agent’s intelligence.
Flexibility. Similar problems can be solved by the same agents, e.g. by
changing the shape or size of the environment.
Fault-tolerance. When obstacles are introduced or not all agents work
correctly, the problem can still be solved in a gracefully degraded way.
Updating-tolerance. Often the time-evoluted global state depends only
weakly on the updating-scheme (synchronous, asynchronous). This is
important if no global clock is available.

Because agents have such valuable properties, they can be employed to
design, model, analyze, simulate, and solve problems in the areas of com-
plex systems, real and artificial worlds, games, distributed algorithms or
mathematical issues.

Related work.

(i) Pattern formation: Agent-based pattern formations in nature and
physics are studied in [7,8]. A programming language is presented in [9]
for pattern-formation of locally-interacting, identically-programmed
agents; as example, the layout of a CMOS inverter is formed by agents.
In [10], a general framework is proposed to discover rules that produce
special spatial patterns based on a combination of Machine Learn-
ing strategies including Genetic Algorithms and Artificial Neural Net-
works.

(ii) Modeling moving agents/particles: In Sect. 3, the agent system is de-
scribed by classical cellular automata (CA) and then implemented by
cellular automata with write access (CA-w) [11]. Other modeling con-
cepts related to CA are lattice-gas cellular automata, block substitu-
tions [12], or partitioned CA as used in [13].

(iii) FSM-controlled agents: In former investigations, we have tried to find
the best algorithms for the Creature’s Exploration Problem [14], in
which the agents have the task to visit all empty cells in the shortest
time, and for the All-to-All Communication Task [13], in which each
agent has to distribute its information to all the others, and for the Tar-
get Searching Task [15]. The FSMs for these tasks have been evolved

66 R. Hoffmann

using, i.e., genetic algorithms, genetic programming [16], and sophis-
ticated enumeration methods. Other related works are a multi-agent
system modeled in CA for image processing [17], and modeling the
agent’s behavior by an FSM with a restricted number of states [18].
An important pioneering work about FSM-controlled agents is [19].
FSM-controlled robots are also well-known.

This work develops further the issues presented in [20] where four colors
were asked for, and where it occurred that only patterns with less than four
colors and a low degree of order could be found. Now, the goal is to generate
patterns with two colors only and a very high degree of order by means of
additional markers.

2. Target patterns and degree of order

How can the class of target patterns be defined? The idea is to use a set
of small local matching patterns as building blocks, also called templates,
that can successfully tile the field (with overlaps). In the color structures
arranged by the agents, such templates are expected with a high frequency.
The templates used here are depicted in Fig. 1 (a). They define the target
path patterns. E.g. the plank template means that there are 3 consecutive
cells of the same color (depicted in black), enclosed by 3+3 cells in another
color (depicted in gray). The plank can be rotated by 90◦, giving the second
form of this type. Altogether, under reflection and rotation, there are 41
distinct templates.

corner(4) plank(2) table(4) key(8) post(4) step(4) cap(4) cross(1) gun(8) H(2)

(a)

path to be

detected matching templates template hits

(b)

Fig. 1. (a) Templates are small building blocks which are expected to appear in
a target pattern. A path cell in the template is shown in “black” (representing
either black or white). “Grey” represents another color (either white or black, or
border). The number of symmetric templates by rotation and reflection is given
in the brackets. Note that the templates describe equally black and white paths.
(b) An example for a path (part of the target pattern) that can be tiled (with
overlaps) by matching templates. Each matching template produces a hit (dot).
All hits are summed up and give the degree of order.

Cellular Automata Agents Form Path Patterns Effectively 67

The patterns created by the agents have to be evaluated, how well they
fit into the defined path pattern class. In order to evaluate a given pattern,
all templates are applied (tested) on each cell. If a match (hit) is found, a
dot is used to mark this cell. Then, all dots are summed up which gives the
total number of hits h. This number is also called degree of order. For the
path shown in Fig. 1 (b), there are 6 templates that match, leading to 9 hits.
If several templates match at the same site, the number of hits remains one.

By this rating method, the terminal cells of a path-tree are not counted.
E.g. a linear path of k black or k white cells without branches has two
terminal cells which are not counted, therefore the length count yields k−2.
Not counting the terminal cells of each path can be seen as a penalty reflected
in the fitness function which is used during the optimization, thereby the
searching for loops (loops without dendrites have no terminals) and long
paths are favored. Note that terminal cells are no border cells, they are
the endings or leafs of the tree-like structures. Loops are favored because
they have no leafs and they can be seen, for example, as ideal stiff physical
structures. The theoretically maximum order is hmax = n × n − 3 (for
even n). The relative order is h/hmax. The maximum can be reached by
special patterns e.g. for n = 4, 8 as shown in Fig. 2 (a), (b). Patterns are
called “balanced” if the number of black and white cells are equal. In order
to simplify the optimization task (Sects. 4, 5), unbalanced patterns were
allowed for #black/#white in the range of 1/2 to 2.

h = 16 - 3 h = 64 - 3 h = 64 - 4 h = 64 - 4

(a) (b) (c) (d)

Fig. 2. Optimal balanced target patterns for (a) field size 4× 4, (b) field size 8× 8.
Near optimal balanced target patterns for size 8 × 8 ((c), (d)). Terminal cells are
marked by a crossed circle.

It can be noticed that the testing for template hits can be performed
synchronously in a CA-like fashion. From the formal language point of
view, the templates can be seen as the generators of a 2D pattern language.
After having defined and used theses path patterns, the author noticed that
related patterns have been known as “Square Kufic” in Arabic art for long.

68 R. Hoffmann

3. Describing the system by cellular automata

The cell’s rule has to react on non-uniform situations, e.g. whether there
is an agent situated on a cell or not. Therefore, the cell’s state is modeled
by a record (Type, (Color,Marker) = V alue,Agent) comprising a type tag,
where

Type ∈ {Border, Particle, ParticleAndAgent}, and
Agent = (Identifier,Direction,ControlState).

In fluid dynamics, there are two representations of agents (fluid parti-
cles), Lagrangian and Eulerian. In the Eulerian representation, agents are
observed at each grid location. In the Lagrangian representation, the po-
sition of each agent is updated and followed by the observer. We used the
Eulerian representation, which makes the CA description and implementa-
tion simpler although more computer space is needed for systems with a low
density of agents. In addition, some computer time overhead arises when
the active agents have to be identified. The Eulerian representation allows
also to create and delete agents in a simple way, although for our problem
this feature was not needed. The implementation of the Lagrangian repre-
sentation requires to maintain a separate list of agents that is connected to
the grid. If the agents density is low and the agents carry a lot of individual
information, then the Lagrangian representation may be a better choice.

The capabilities of the agents have to be defined before designing or
searching for the agents’ behavior. The main capabilities are: the perceivable
inputs from the environment, the actions an agent can perform, and the size
of its memory (number of possible control states, optionally additional data
states). In our system, an agent shall react on the following inputs in a
certain combination:
— the own value V = (color,marker) of the cell the agent is situated on,
— the value in front VF (in moving/viewing direction),
— a border cell in front,
— the blocked situation/condition, caused either by a border, another agent
in front, or when another prior agent can move to the front cell in the case
of a conflict. The inverse condition is called free.

An agent has a moving/viewing direction D ∈ {0, 1, 2, 3} ≡{toN, toE,
toS, toW }. Note that in the used model an agent cannot observe the di-
rection and control state of another agent in the neighborhood, only its
presence. The actions that an agent shall be able to perform are:
— move: move ∈ {0, 1} ≡ {wait, go},
— turn: turn ∈ {0, 1, 2, 3}. The new direction is D(t + 1) ← (D(t)

+turn) mod 4,
— setvalue: The new value of (color, marker) is V (t + 1) ← setvalue ∈
{0, 1, 2, 3} ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Cellular Automata Agents Form Path Patterns Effectively 69

The move, turn and set value actions can be performed simultaneously
(32 combinations). There is only one constraint: when the agent’s action
is go and the situation is blocked, then the agent cannot move and has to
wait, but still it can turn and change the cell’s particle value. In the case
of a moving conflict, the agent with the lowest identifier (ID = 0 . . . k− 1)
gets priority. Instead of using the identifier for prioritization, it would be
possible to use other schemes, e.g. random priority, or a cyclic priority with
a fixed or space-dependent base.

How can an agent move from A to B in cellular automata (CA)? Two
rules have to be performed, a delete-rule that deletes the agent on A, and
a copy-rule that copies the agent to B. In CA, both rules have to compute
the same blocking condition, this means a redundant computation. In order
to avoid this redundancy, a two-phase updating scheme can be used (first
compute the moving condition, second use it in cell A and B), or using the
Cellular Automata with write-access model (CA-w) [11]. When using the
CA-w model, the moving condition needs to be computed only once, either
by cell A or B. If A is the actor, it computes the condition and if it is true,
it copies the agent to B (like “beaming”) and deletes it. If B is the actor,
it computes the condition and if it is true, it copies the agent from A to B
and deletes it on A. The simulation program was implemented by the CA-w
model, although it is possible to implement the system in standard CA with
redundant computation.

The CA-w model was introduced in order to describe moving agents,
moving particles or dynamically changing activities. This model allows to
write information onto a neighbor. This feature has the advantage that a
neighbor can directly be activated or deactivated, or data can be sent to it
by an agent.

The behavior of an agent shall be determined by an embedded finite state
control automaton (FSM) (Fig. 3). The FSM corresponds to the “brain”
or algorithm that controls the agent. Each CA cell is supplied with an
FSM which is active when an agent is situated on it. An FSM contains
a state table (also called next state/output table). Outputs are the actions
(move, turn, setvalue) and the next control state. Inputs are the control
state s and the relevant input situations x. The input mapping reduces all
possible input combinations of (border, blocked, value, front value) to an
index x ∈ X = {0, 1, . . . , |X| − 1} that is used in combination with the
control state to select the actual line of the state table.

The following input mapping is used. If the situation is free, the index x
is the particle’s value in front: x = VF. If the situation is blocked by a border
cell in front, then x = 4. If the blocking is caused by another agent in front,
or by a prior agent in the case of a conflict, then the own value is directly
mapped to the index with an offset x = V +5. It is possible to choose other

70 R. Hoffmann

Fig. 3. Finite state machine (FSM). The state table defines the next control state,
the setting of the particle’s value (color, marker), the agent’s new direction, and
whether to move or not.

input mappings, with fewer or more x codes, or other assignments, e.g. in
the case of blocking, the direction of the agent could be used (x = D + 5),
instead of the own particle’s value. Note that agent’s view is very limited, it
can react either on the value in front or its own value. Therefore, the agent’s
task is really difficult.

The used updating scheme is synchronous; exemplarily simulation ex-
periments showed that the results with asynchronous updating are quite
similar.

4. Evolving the agent’s behavior by a genetic algorithm

The ultimate goal is to find an FSM (algorithm controlling the behavior)
which is optimal on average for all possible initial configurations. As we can-
not optimize for all possible initial configurations within a limited amount of
computation time, we used: (i) a fixed field size of N = n×n and optimized
separately for n = 4, 8, 16, (ii) a fixed density of agents (δ = N/k = 25%),
and (iii) 100 initial configurations (for training and evaluation). This means
that we searched for specialists and not for all-rounders.

As the search space for different FSMs is very large, we are not able to
check all possible behaviors by enumeration. The number of FSMs which
can be coded by a state table is Z = (|s||y|)(|s||x|), where |s| is the number of
control states, |x| is the number of inputs and |y| is the number of outputs.
As the search space increases exponentially, we use a genetic algorithm in
order to find the best FSM with reasonable computational cost. Even with a
genetic approach, the number of states, inputs and outputs have to be kept
low in order to find a good solution in acceptable time. A possible solution
(genome of an individual in the genetic) corresponds to the contents of the
FSM’s state table. For each input combination (x, state) = j, a set of actions
is assigned: actions(j) = (nextstate(j), setvalue(j),move(j), turn(j)), e.g.
actions((0, 0)) = (4, 2, 1, 1) given by the table in Fig. 4 (a).

Cellular Automata Agents Form Path Patterns Effectively 71

Fig. 4. (a) Top FSM evolved for 4× 4 fields. (b) Top FSM evolved for 8× 8 fields.
(c) Top FSM evolved for 16× 16 fields.

A relatively simple genetic algorithm was used. We experimented also
with the classical crossover/mutation method. Then, we found that muta-
tion only gave us similar good results. Therefore, we are using here only
mutation. It is subject to further research which heuristic is best to evolve
state machines.

The population of M individuals is stored in two lists (A,B) with M/2
individuals each. During each iteration, the following steps are performed:

(Step 1) [A′ ← mutate(A)] — M/2 offspring are produced from list A
by mutation.
(Step 2) [(A,B)← deleteDuplicates(sort(A′, A,B))] — The union of
the M/2 offspring and the old M individuals are sorted according to
their fitness (high fitness — low time first), duplicates are deleted and
the number of individuals is then reduced to the limit of M in the
pool.
(Step 3) [(A,B)← exchange(b, A,B)] — In order not to get stuck in
local minima and to allow a certain diversity in the gene pool, the first
b individuals from B are exchanged with the last b individuals from A.

An offspring is produced by modifying separately with a certain probabil-
ity p each action ∈ {nextstate, setvalue,move, turn}: action← (action+1)
mod Naction. We restricted the number of actions toNstates= 6, Nsetvalue= 4,
Nmove = 2, and Nturn = 4.

The fitness of our multi-agent system is defined as the number t of time
steps which is necessary to emerge successfully a target pattern with a given
degree htarget of order, averaged over all given randomized initial configura-
tions (color and marker distribution, position and directions of the agents).
As the behavior of the whole system depends on the behavior of the agents,
we search for an agents’ FSM that can solve the problem successfully with a

72 R. Hoffmann

minimum number of steps for a large number of initial configurations. Suc-
cessfully means that a target pattern with h ≥ htarget was found. The fitness
function F is evaluated by simulating the agent system with a tentative FSM
on a given initial configuration.

F (FSM, initial config.) = TimeSteps if successful within TimeLimit,
F (FSM, initial config.) = HighConstant otherwise.
Then the mean fitness F (FSM) is computed by averaging over all given

initial configurations. The mean fitness F is then used to rank and sort the
FSMs. The parameters used were TimeLimit = 5, 000 and HighConstant
= 100, 000. The genetic procedure starts with M = 20 random FSMs.
Usually, there is no FSM in the initial population that is successful. After
some generations, some successful FSMs are found. Then, after further
generations, FSMs are expected to be evolved that are completely successful
on all or most of the given set of initial configurations (the training set). It
turned out that it is very difficult and time consuming to find good solutions
straightforward. Therefore, the genetic procedure was divided into several
phases with increasing difficulty by increasing stepwise the degree of order
htarget and the cardinality of the training set. In addition, several runs
were performed in parallel with different initial random seeds. The total
computation time on a processor Intel Xeon QuadCore 2 GHz was around
two weeks to find optimal FSMs for the cases described in the next section.

5. Evolved finite state machines
First case. This case was investigated in order to find the most efficient

optimization parameters. The field size was 4 × 4, and 4 agents were used.
The number of individuals in the whole list (A,B) was set to M = 20. The
number of b individuals from the second list B (with smaller fitness) to be
exchanged with list A was varied, the most efficient value was b = 3. The
mutation probability p was varied from 1/20 to 1/60, p = 1/40 turned out
to be the most efficient (good solutions were found fastest).

The best evolved FSM (Fig. 4 (a)) was able to order totally (100%,
hmax= 13), Fig. 1 (a) only 75 random fields out of 100, and taken into
account only them, the mean number of time steps was t100% = 467 (min. 14,
max. 1960). This result shows that it is very difficult, even for small fields
and using markers, to find an FSM that is able to order totally all possible
initial configurations.

Second case. The field size was 8×8, and 16 agents were used. The cho-
sen density of the agents was again δ = 1/4, because as a result taken from
the former research [20], this density turned out to be most cost-effective in
terms of time× agents. The degree of order to be reached was incremented
from lower levels until htarget = 58, the theoretical maximum is hmax = 61.
The relative degree of order is hrel = h/hmax, e.g. 58/61 = 95%. FSMs were

Cellular Automata Agents Form Path Patterns Effectively 73

found which are successful on all 100 configurations of the training set. The
total number of optimization generations was 8,000 (each with 10 offspring
FSMs), and the TimeLimit was 3,000 simulation steps. The best found
FSM for hrel ≥ 58 (95%) is given in (Fig. 4 (b)), and the mean number of
time-steps was t95% = 738, averaged over 100 random initial configurations.
For comparison with the following third case, the requested degree of order
was lowered to hrel = 90% which yielded a mean time of only t90% = 412.

Third case. The field size was 16 × 16, and 64 agents (δ = 1/4) were
used. The degree of order to be reached was incremented from lower levels
to htarget = 228 (hrel = 90%), the theoretical maximum is hmax = 253.
Compared to the second case, hrel is 5% lower, because it was not possible to
find FSMs which were successful on all 100 configurations of the training set.
The total number of optimization generations was 8,000 (each with 10 new
FSMs tested), and the TimeLimit was 5,000. The best found FSM for hrel ≥
90% is given in (Fig. 4 (c)). The mean number of time-steps was t90% = 599,
averaged over 100 random initial configurations. Depending on the initial
configuration, t90% varied between 199 and 1846. Comparing to the second
case (field size ratio is 4:1), the time ratio is tratio= t90%,16×16/t90%,4×4=1.45.

The cost per cell for ordering is cpc = cost/N = t × k/N = t × δ. The
ratio cpc90%,16×16/cpc90%,4×4 is equal to the above time ratio tratio.

The whole multi-agent system using the evolved top FSMs was simulated
(Figs. 5 and 6). The snapshots show how the path patterns are being built.
It can be seen that at the end black and white long paths trees appear, or
closed loops. At the beginning agents move on any cell, whereas at the end
they mainly move on the black paths. The markers (depicted as gray (green)
or black (red) small squares) are random at the beginning, and almost all of
them are changed to black (red) during the run by the agents. Black (red)
markers signal to the agent that the system is already partially ordered,
and gray (green) markers signal that the degree of order can be improved.
Thus, the agent’s FSM can react not only on the local color but also on

Fig. 5. Snapshots showing how path patterns are formed in a 8 × 8 field by 16
agents. h = degree of order. Agents are represented by triangles, and the markers
are represented by small squares (black (red) = 1, gray (green) = 0). Dots represent
template hits.

74 R. Hoffmann

Fig. 6. Snapshots showing how path patterns are formed in a 16 × 16 field by 64
agents. h = degree of order.

the marker’s value in order to be more effective and efficient. Note that
the reached path patterns are not stable. After having reached the required
degree of order, the pattern is changing and the degree of order is fluctuating
(e.g. for one selected 16× 16 field: hrel = 90%(≈ +8 . . .− 15%), see Fig. 7).

Fig. 7. Degree of order vs. time. Initial configuration: 16 × 16 field with random
colors, random markers, and with 64 random placed agents. The degree of order
to be reached was htarget = 229(hrel = 90%). The best evolved FSM was used.

6. Conclusion

The objective was to find FSM-controlled agents that can form specific
path patterns. The class of path patterns was defined by a set of templates,
small 3× 3 local patterns. The number of templates that can be found in a
given pattern defines the degree of order. For n× n fields (n = 4, 8, 16) and
a density of 25% of agents, near optimal FSMs were evolved by a genetic
algorithm. The agents are able to form successfully the aimed path patterns

Cellular Automata Agents Form Path Patterns Effectively 75

with a 100–90% degree of order by means of markers. The general result is
that the generation of specific patterns by CA agents can be designed in a
methodical way. Using larger templates, the same method would allow to
generate more sophisticated patterns.

REFERENCES

[1] D. Shi et al., J. Appl. Phys. 97, 064312 (2005).
[2] M. Itoh, M. Takahira, T. Yatagai, Opt. Rev. 5, 55 (1998).
[3] Y. Jiang, T. Narushima, H. Okamoto, Nature Phys. 6, 1005 (2010).
[4] G. Roberts Jr, “X-ray Laser Explores How to Write Data with Light”,

National Accelerator Laboratory, March 19, 2013,
https://www6.slac.stanford.edu/news

[5] D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Nature 456, 218 (2008).
[6] A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern

Formation, Birkäuser, 2005.
[7] E. Bonabeau, “From Classical Models of Morphogenesis to Agent-Based

Models of Pattern Formation”, Santa Fe Institute Working Paper:
1997-07-063.

[8] H. Hamann, “Pattern Formation as a Transient Phenomenon in the Nonlinear
Dynamics of a Multi-Agent System” in: Proc. of MATHMOD 2009.

[9] R. Nagpal, “Programmable Pattern-Formation and Scale-Independence”,
MIT Artificial Intelligence Lab, 2002.

[10] S. Bandini, L. Vanneschi, A. Wuensche, A.B. Shehata, Fundam. Inform. 87,
207 (2008).

[11] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 5, 53 (2012).
[12] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution

Algorithm — Theory and Application, World Scientific, 1994.
[13] R. Hoffmann, D. Désérable, Lect. Notes Comput. Sci. 7979, 316 (2013).
[14] M. Halbach, R. Hoffmann, L. Both, Lect. Notes Comput. Sci. 4173, 571

(2006).
[15] P. Ediger, R. Hoffmann, Electronic Notes Theor. Comput. Sci. 252, 41

(2009).
[16] M. Komann, P. Ediger, D. Fey, R. Hoffmann, Lect. Notes Comput. Sci.

5481, 280 (2009).
[17] M. Komann, A. Mainka, D. Fey, Lect. Notes Comput. Sci. 4671, 432 (2007).
[18] B. Mesot, E. Sanchez, C.-A.Peña, A. Perez-Uribe, “SOS++: Finding Smart

Behaviors Using Learning and Evolution. Artificial Life VIII”, MIT Press,
Cambridge, Mass., 2002, pp. 264–273.

[19] M. Blum, W. Sakoda, “On the Capability of Finite Automata in 2- and
3-dimensional Space, 18th IEEE Symp. on Foundations of Computer Science,
1977, pp. 147–161.

[20] R. Hoffmann, Lect. Notes Comput. Sci. 8751, 660 (2014).

http://dx.doi.org/10.1063/1.1861143
http://dx.doi.org/10.1007/s10043-998-0055-3
http://dx.doi.org/10.1038/nphys1776
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.5506/APhysPolBSupp.5.53
http://dx.doi.org/10.1007/978-3-642-39958-9_30
http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1016/j.entcs.2009.09.013
http://dx.doi.org/10.1016/j.entcs.2009.09.013
http://dx.doi.org/10.1007/978-3-642-01181-8_24
http://dx.doi.org/10.1007/978-3-642-01181-8_24
http://dx.doi.org/10.1007/978-3-540-73940-1_43
http://dx.doi.org/10.1007/978-3-319-11520-7_70

	1 Introduction
	2 Target patterns and degree of order
	3 Describing the system by cellular automata
	4 Evolving the agent's behavior by a genetic algorithm
	5 Evolved finite state machines
	6 Conclusion

