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A model of simulated cognitive agents (naive creatures) learning to
safely cross a cellular automaton-based highway is described. These crea-
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tures are minimal, equipped with the ability to “perceive”, “reason”, “judge”,
and “respond” in order to learn from each other by evaluating if a creature
in the past was successful in crossing the highway for their current situa-
tion. A large amount of data files are generated from this simulation model
under different configurations of the simulation parameters’ values (such as
the traffic density and the nature of these creatures in terms of fear and de-
sire). These simulation parameters heavily influence the learning outcomes
examined through the collected simulation metrics. We study how these
parameters influence these metrics using regression trees.

DOI:10.5506 /APhysPolBSupp.9.77

1. Introduction

In autonomous swarm robotics, modeling and simulation play an impor-
tant role. The individual robots may be identified as cognitive agents [1-3]
and various ideas tested in virtual reality. The developed models are usu-
ally multifactorial and understanding their dynamics and performance is
often a challenging task. For example, when one requires the robotic swarm
(cognitive agents) to learn how to accomplish some tasks in unknown dy-
namically changing environments under the constraint of having minimal
computational resources. In this case, one may explore the process of learn-
ing through observation and repetition, [4] and [5], utilizing simple decision-
making algorithms. In this paper, we investigate such approach, i.e. we
investigate the performance of a simple learning algorithm based on an “ob-
servational social learning” mechanism, [4] and [5], where each cognitive
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agent learns by observing the outcomes from the actions of cognitive agents
that have already attempted to carry out a task and imitating the successful
ones.

We consider the model of naive creatures learning to cross a highway
introduced in [6-10]. In this model, creatures use a simple decision making
formula and build their knowledge base (KB) by observing the performance
of the creatures that attempted to cross the highway earlier. We investigate
the effects of creatures’ KB accumulation through repetition and its inter-
action with other model parameters on the number of “successful”, “killed”,
and “queued” creatures when learning to cross a highway. In particular, we
investigate the effects of transferring of the KB after building it through
many populations of creatures within the same environment (i.e., the high-
way with the same traffic density) as opposed to building it through only a
single population of creatures within the same environment. In our analy-
ses, we use regression trees as they work well in scenarios where the data is
too complex to model using more standard methods such as ANOVA linear
models. Regression tree analyses do not make any statistical model assump-
tions and are instead, heavily algorithmic [11]. Also, tree-based analyses
handle interactions among the factors very well due to its condition based
results [11]. This is an important aspect in our investigation.

The paper is organized as follows: Section 2 describes the model; Sec-
tion 3 describes simulation setup and resulting data; Section 4 presents
regression tree analysis of the simulation data, and Section 5 reports our
conclusions and outlines future work.

2. Model of naive creatures with fear and desire learning
to cross a highway

For completeness of the paper, we review the main features of the model
and refer the reader to [6-10] for details. In this work, we assume that
the environment is a single-lane unidirectional highway without intersec-
tions represented by the modified Nagel-Schreckenberg cellular automaton
model. See [12-15] for the details. The model consists of four steps that are
applied simultaneously to all cars: acceleration, safety distance adjustment,
randomization, and change of position. The cars are generated at “starting
cells” randomly with car creation probability (Car Prob.) and are assigned a
random speed between zero and the maximum allowed speed for cars, which
is set in the configuration file.

At each time step, a creature is generated only at the crossing point (CP)
set at the initialization step and is placed into the queue at this CP. Each
generated creature falls with equal probability (0.25) into one of the four
categories: (1) no fear nor desire; (2) only fear; (3) only desire; (4) both fear
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and desire. The creatures’ attributes play a role in their decision making
process on whether or not to cross the highway through the values of fear
(aversion to risk taking) and desire (propensity to risk taking) that creature
may experience. They want to cross the highway without being killed by
the oncoming vehicles and have a strong instinct to survive.

Each creature is “an autonomous entity capable of interacting with its
environment and other agents” capable of: (1) matching simple patterns;
(2) evaluating distances in an approximate way; (3) evaluating the velocity
of moving vehicles in an approximate way; (4) assigning a discrete number
to an approximate class; (5) witnessing what had happened to the creatures
that previously crossed the highway at this crossing point (with exclusion
of the first creature); (6) evaluating what they witnessed in (5), .e. if it
was successful or not; (7) imitating the creatures which crossed successfully;
(8) deciding not to cross and wait for better conditions or to look for a
different crossing point when unsuccessful crossings outnumber the successful
ones. All of these allow each crossing point (CP) to build one knowledge
base (KB) during the experiment that is available to all creatures at that CP.

The creatures attempt to cross the highway having a limited horizon of
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vision and perceiving only fuzzy levels of distance (e.g., “close”, “medium”,
“far”) of cars within this horizon and their speeds (e.g., “slow”, “medium”,
“fast”). The ranges for these qualitative categories are set in the simulator’s
configuration file. The creatures may build up in the queue as a result of not
crossing at each time step. If the simulation setup permits, after deciding
not to cross the highway, a creature may move randomly along the highway
horizontally in either direction to a new CP or it may stay at the same CP
with equal probability of 1/3. The number of horizontal cells a creature
may move in one-time step is 1 and the maximum distance the creature
may deviate from its original CP in both directions is 5. If the creature at
the top of a queue leaves the queue, the creature that was behind moves to
the top of the queue. When a creature crosses the highway at a given CP,
information is recorded into the knowledge base (KB) of all the creatures
at this CP. The information about qualitative description of velocity (e.g.,
such as “fast”, “medium”, and “slow”) and of the distance (e.g., such as “close”,
“medium?”, “far”) is stored, respectively, in the columns and rows of the KB
table.

The KB table is initialized as tabula rasa, i.e. with all its entries set
to 0, allowing creatures to cross the highway regardless of the observed
(distance, velocity) levels until the first successful crossing of a creature, or
five consecutive unsuccessful crossings, whichever comes first. If a creature
successfully crossed the highway, the perceived (distance, velocity) score in
the KB table is increased by one point. If the creature was killed, it is
decreased by one point.
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After the initialization of the simulation, each creature at the top of the
queue consults the KB table to decide if it is safe or not to cross. Its decision
is based on the implemented intelligence/decision making algorithm, which
for a given (distance, velocity) pair combines the “success ratio” of crossing
the highway for this (distance, velocity) pair with the creatures’ fear and/or
desire values, as follows.

For each (distance, velocity) pair at each time step, the numerator in the
success ratio is the current value from the KB table, i.e. it is the number
of “successful crossing” minus the number of “unsuccessful crossings” for
this (distance, velocity) pair up to this time. The denominator is the total
number of creatures that have crossed the highway successfully regardless
of the (distance, velocity) combination up to this time; i.e. it is the number
describing the creatures’ entire population success up to this time. If for
some (distance, velocity) configuration at the simulation start, all creatures
are killed, ratio becomes “—5/0”. In this case, we set the success ratio to
zero since “division by zero” is undefined.

A randomly generated creature will base its decision on the formula:
(1) success ratio + value of desire — value of fear, if it has both fear and
desire; (2) success ratio — value of fear, if it has only fear; (3) success ratio
+ wvalue of desire, if it has only desire; (4) success ratio, if it has no fear
and no desire. If a creature and a given (distance, velocity) combination
yield from the formula a value that is less than zero, then the creature will
not attempt to cross the highway under this condition and it will wait for
a configuration for which the value of the formula is non-negative or it may
decide to move to another crossing point.

The main simulation loop of the model consists of: (1) generation of
cars at each lane of the highway using the Car Prob.; (2) generation of
creatures at each CP with their attributes; (3) update of the car speeds
according the Nagel-Schreckenberg model; (4) movement of the creatures
from the CP queues into the highway (if the decision algorithm indicates
this should occur); (5) update of locations of the cars on the highway. This
includes passing other cars in the case of multi-lane highway. It also includes
the logic to check if any creature has been killed; (6) advancement of the
current time step. After the simulation has been completed, the results are
written to output files using an output function.

3. Simulation setup and simulation data

A single run of the simulation lasts for a number of time steps set up
at the initialization step and various output files are generated, e.g. (1) file
containing the total number of creatures that have successfully crossed the
highway, the total number of creatures that were killed while crossing, and
the number of queued creatures at the end of the simulation; (2) file con-
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taining time-dependent data, i.e. at the end of each discrete time step, the
number of creatures that have successfully crossed the highway up to this
time, the number of creatures that were killed while crossing up to this time,
and the number of queued creatures at this time; (3) file containing the state
of the KB table at each time step. A large amount of data files is generated
when the simulation is looped many times both at a particular configuration
of the adjustable simulation parameters/factors (to create repetitions) and
also at different configurations of the parameters (in order for comparison).

We consider the data generated from the simulation looped many times.
The parameters that remain constant are: one-lane highway with a length
of 120 cells (900 meters long), 1511 time steps, 30 repetitions, random decel-
eration equal to 0 (there are no erratic drivers), and a 3 by 4 KB table with
an extra entry. The KB table has 3 groupings of distance and 4 groupings
of speed. The creatures in this case specifically perceive: (1) “close” for a
vehicle being 0 to 3 cells away, “medium” if it is 4 to 5 cells away, “far” if
it is 6 to 7 cells away and “out of range” if it is 8 or more cells away, re-
gardless of the velocity of the vehicle, and this is encoded in the extra entry;
(2) “slow” when the perceived velocity of a vehicle is 0 to 3 cells per time
step, “medium” when it is 4 or 5 cells per time step, “fast” when it is 6 or
7 cells per time step, and “very fast” when it is 8 to 11 cells per time step.
A vehicle’s maximum speed is at 11 cells per time step.

There are 6 parameters that vary through the main simulation loop.
These parameters are: (1) car creation probability (Car Prob.); (2) crossing
point (CP); (3) value of fear, (4) value of desire; (5) the KB transfer direction
(KB Transt.), and (6) horizontal creature movement (Horiz. Cre.).

The Car Prob. determines the density of the vehicle traffic and it varies
between the values: 0.1, 0.3, 0.5, 0.7, and 0.9. A vehicle is generated at the
start of the highway at each time step with a given Car. Prob.

The CP determines the location at which the creature will cross the
highway and it varies between the values: 40, 60, and 80 (the cell number
of the highway). The distance from where the vehicles are generated is
important because it will affect the nature of the vehicle traffic. For example,
there will likely be more vehicles traveling at maximum speed and in a more
homogeneous manner near CP 80 than at CP 40.

The value of fear and value of desire parameters both vary between the
values: 0, 0.25, 0.5, 0.75, and 1. Being a part of the decision formula, these
values influence the creatures’ decision making process of whether or not to
cross the highway.

The KB Transf. varies from: ‘“none”, “forward”, and “backward”. This
parameter determines whether or not the KB table at the end of one run
of the simulation is transferred to the beginning of the simulation at a dif-
ferent traffic environment (i.e., with a different value of Car Prob.). When
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the KB Transf. is set to “none”, the KB table is not transferred from an
environment with one car traffic density to an environment with another
car traffic density. When KB Transf. is set to “forward”, the KB table is
transferred from a less dense traffic environment to the one with immedi-
ately denser traffic. In this case, the simulations start in the environment
with Car Prob. 0.1 and with KB table containing all entries of 0. Thus,
the data with Car Prob. equal to 0.9 starts with a KB accumulated over
the other four less dense traffic environments. When the KB Transf. is set
to “backward”, the KB table is transferred from denser traffic environment
to the one with immediately less dense traffic. In this case, the simulations
start in the environment with Car Prob. 0.9 with the KB table with all
entries of 0 in the KB table. Thus, in the “backward” case, the KB table
in the environment with Car Prob. equal to 0.1 is accumulated from the
other four traffic environments with higher car density. This transfer of KB
in either direction happens after building the KB by a single population
of creatures within a given environment (Framework (I)). Under a different
scenario (Framework (II)), the transferring of the KB in either direction
happens after building the KB by several populations of creatures within
a given environment. Thus, in Framework (II), the KB tables are always
transferred from the current repetition to the next repetition within any
particular configuration of the parameters’ values. In this framework, even
when KB Transf. is “none”, the KB table is still transferred at the end of
a simulation from one repetition to the next one within each environment
with the same car density. In Framework (II) when KB is “forward” (“back-
ward”), the KB is additionally transferred at the end of all the repetitions
in the environment with lower (higher) Car Prob. to the one with an im-
mediately higher (immediately lower) Car Prob. The distinction between
Framework (I) and Framework (II) is important as the amount of learn-
ing under each Framework is different and affects the creatures’ success in
crossing the highway. In Framework (II), the KB tables become much more
developed as there is much more transferring of the KB tables occurring.

The parameter Horiz. Cre. varies form 0 and 1 and determines whether
or not the creatures can decide to move horizontally in either direction if
they decide not to cross the highway. The creatures are only allowed to
move horizontally if Horiz. Cre. equals 1.

Every combination of the 6 parameters/factors is considered with 30
repeats each. The “summary” files of each configuration are collected into one
large dataset containing 67,500 rows. The columns include the value for each
configuration parameter and also the main response variables: the number
of successful creatures, the number of killed creatures, and the number of
queued creatures at the end of the simulation. The dataset is created using

R code.
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4. Regression tree analysis

The considered model of creatures learning to cross a highway is a mul-
tifactorial model with some factors having several levels. Analysis of factor
effects and their interactions is often a challenging task in multifactorial
models with many independent variables. Deciding on how to model data
coming from a complex simulated dynamical system in order to extract pat-
terns of likely causes and influences may not always be easy. One may apply
ANOVA to eliminate irrelevant relationships in order to improve the under-
standing of the system. However, due to the number of assumption under
which ANOVA can be applied to produce meaningful results, this may not
always be feasible. Thus, one may need to look for other methods, like
regression trees, which allows us to perform the analysis regardless of the vi-
olation of the ANOVA assumptions to extract information about the system
behavior, as in our study where we first applied ANOVA linear models.

In our study, the datasets are set up appropriately under the experi-
mental design paradigm where each simulation parameter is treated as a
factor. When we first applied ANOVA linear models there were difficulties,
which included obtaining residuals with a non-random trend and interpreting
models with interaction effects between factors. For example, just trying to
examine the interaction between fear and desire requires the interpretation
of 5 x 5 = 25 coefficients as both those factors have 5 levels. The application
of regression trees works well in scenarios where the data is too complex to
model using more standard methods such as ANOVA linear models. Re-
gression tree analysis does not make any statistical model assumptions and
is instead, heavily algorithmic [11]. Fortunately, tree-based analyses also
handle interactions among the factors very well due to its condition based
results [11]. Though the application of regression trees is best suited for
predicting the results for future data/determining a decision rule, it is for
precisely these reasons above, that regression tree models are applied in or-
der to better understand the relationship among the simulation parameters
and the responses: the number of successful, killed, and queued creatures.

4.1. Methodology

The methodology of trees follows the approach from [11]. Trees focus
on partitioning the data space into many different regions. The estimated
value of the response in a region is simply the mean of those that belong to
the region. This means that all data points in the same region will have the
same predicted value. The algorithm used in regression trees is as follows:

1. Consider for the data, all partitions into 2 groups that are separated
by a difference in exactly 1 parameter.
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2. Calculate the residual sum of squares for all partitions:
RSS(Partition) = RSS(Part;) + RSS(Parts) ,

where RSS(Part;) is the residual sum of squares for group ¢ using the
mean response within each group as the predicted value.

3. Create a split according to the partition with the minimum residual
sum of squares.

4. Repeat steps 1 to 3 for the two new subsets.

As this process continues, the tree is growing larger with more nodes.
This process lasts until the reduction in RSS between the previous and cur-
rent tree is under a small threshold. As explained in [11], a strategy is to
prune a large tree (more partitions/nodes) created using a small threshold
value. The process of tree pruning involves removing the nodes that least
influence the minimization in residual sum of squares using k-fold valida-
tion [11]. In this paper, the analysis is performed using R with focus on
the “rpart” function from the “rpart” package [16]. Multiple tree models
are created using data under both frameworks on the different responses
(successful, killed, and queued creatures) at different values of the complex-
ity /tuning parameter which relates to the threshold for when to stop growing
the tree. The term “tuning parameter” will be used rather than “complex-
ity parameter” as to avoid confusion with the other terms, “Car Prob.” or
“crossing point”. The pruning of the trees is considered for larger trees. In
each case, all of the simulation parameters are used as factors. When view-
ing the tree figures, the path continues on the left side if the listed condition
is true. Only the constructed trees of reasonable size (not too small nor
too large) are included. Indeed, these fitted models help to illustrate the
results from previous work in a more quantitative way. The following tree
diagrams in this paper do not highlight the variation of the data. However,
we have explored the variation of the data in previous work. If the fear
value and Horiz. Cre. value are both 0, then there is very little variance in
the data. Allowing for horizontal creature movement will slightly introduce
more variance, while setting a non-zero value of fear will greatly increase the
variance.

4.2. Data without knowledge base transfer between repeats —
Framework (I)

Considering the tuning parameter of 0.01, the following trees are created
and shown in Figs. 1, 2, and 3. In these three figures, the lengths of the
branches are proportional to the amount of reduction of the residual sum of
squares.
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Diagram for Tree Model:
Successful Creatures with Tuning Parameter 0.01

horiz _;cre=0
fear=0.250.5.0.75.1 directioh=none
fear=0.$,0.751 car_pr04=0.1,0.9
1019 1196
587.2 1078

1033 7438

Fig. 1. Tree diagram for number of successful creatures with tuning parameter 0.01
under Framework (I). If the listed condition is true, the flow moves to the left side.
Reduction in RSS is proportional to branch length.

Diagram for Tree Model:
Killed Creatures with Tuning Parameter 0.01

horiz_cre=0
I

car_prob=p.507,0.9 cp380

desire30,0.25 feal=1
| fear=0.751 |  desite=0

5'1525,8439.9345'6856349 380 jesite=0 car_prob=p5.0.7,0.9

9557 16.1 Céf_pfob=b,5,0.7,0.9
5.

9.27813.86

desife=0 desife=0
fear=0.751

8.247 fear=0.751
12.26 17.8 11.97

18.6227.75

Fig.2. Tree diagram for number of killed creatures with tuning parameter 0.01
under Framework (I). If the listed condition is true, the flow moves to the left side.
Reduction in RSS is proportional to branch length.
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Diagram for Tree Model:
Queued Creatures with Tuning Parameter 0.01

horiz_cre=1
1
direction=backward forward feal=0
car grob:l}B 05,0.7 fear=0,0.25
301.2 477
413.2 910.3

756 1400

Fig.3. Tree diagram for number of queued creatures with tuning parameter 0.01
under Framework (I). If the listed condition is true, the flow moves to the left side.
Reduction in RSS is proportional to branch length.

From the tree for successful creatures (Fig. 1), the main reduction in
residual sum of squares is through dividing the data by whether or not the
creatures can move horizontally along the highway. When the creatures
are not able to move horizontally, a simulation with a non-zero value for
fear is estimated to have 103.3 successful creatures, while a simulation with
fear set to 0 is estimated to have about 743.8 successful creatures. If the
creatures can move horizontally, the main factors influencing the number
of successful creatures are KB Transf. and Car Prob. when the knowledge
base is indeed transferred from one traffic environment to the next one.
When the knowledge base does not transfer to the next traffic environment
(direction = “none”), then the estimated number of successful creatures is
1,078 for fear value of 0 and 0.25 and it is only 587.2 for fear value 0.5,
0.75 and 1. Thus, higher fear values have a significantly depressing effect on
number of successful creatures.

There is an interesting result in the tree of Fig. 1 when KB transfer
direction is different from ‘“none”, i.e. when KB Transf. is “forward” or
“backward”. For Car Prob. either 0.1 or 0.9, the estimated number of
successful creatures is 1,019, which is actually lower than the estimated
number 1,196 of successful creatures for other values of Car Prob. This
is because the tree considers both “forward” and “backward” transferring
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of KB tables in the same category and it combines the data coming from
two extreme cases: the data coming from the environments with the lowest
amount of knowledge (data with Car Prob. 0.1 & KB Transf. “forward”
and data with Car Prob. 0.9 & KB Transf. “backward”) with the data
coming from the environments with highest amount of knowledge (data with
Car Prob. 0.9 & KB Transf. “forward” and data with Car Prob. 0.1 &
KB Transf. “backward”). The scenarios when Car Prob. is either 0.3, or
0.5, or 0.7 have a higher mean number of successful creatures, because in
these scenarios regardless what is the direction of KB transfer, “forward”
or “backward”, the creatures always start with some preexisting knowledge,
i.e. they do not start tabula rasa. This result shows that: (1) the knowledge
that the creatures acquire helps them to succeed; (2) starting tabula rasa has
detrimental effect on creatures’ success which cannot be compensated easily
even by the data coming from the environments with the highest amount of
knowledge. Furthermore, the creatures’ ability to move horizontally (Horiz.
Cre. equal to 1) contributes to the higher estimated numbers of successful
creatures. This is consistent with results reported in our previous work.

The tree for the number of killed creatures (Fig. 2) is larger than the
one for successful creatures. Given the same tuning parameter of 0.01, we
observe that more factors may affect the number of killed creatures than
the number of successful creatures. It is estimated that more creatures are
killed under the scenario where creatures can move horizontally. In this
scenario, the smallest estimated number of killed creatures is 5.8 and their
largest estimated number is 27.75. If they do not move horizontally, their
smallest estimated number is 5.152 and their largest estimated number is
16.1. Taking the time to interpret this tree supports the idea that higher
values of desire promote a higher number of killed creatures and higher
values of fear promote a lower number of killed creatures. For example,
when creatures are not allowed to move horizontally, for values of desire less
or equal to 0.25, the highest estimated number of killed creatures is 6.349,
while for values of desire greater than 0.25, this number is 16.1. In the case
when the creatures are allowed to move horizontally, for desire value 0, the
highest estimated number of killed creatures is 11.97, while if desire value
is greater than 0, this number is 27.75. Looking at the fear values, in the
case when creatures are not allowed to move horizontally, if these values are
0.75 and 1, then the highest estimated number of killed creatures is 5.843,
while if these values are less than 0.75, then the highest estimated number
of killed creatures is 16.1. This tree analysis also shows that selection of
crossing point is influential. Setting the crossing point further away from
the start of highway will lower the estimated number of killed creatures in
many cases.
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For example, when creatures are not allowed to move horizontally, the
estimated number of killed creatures is 9.557 at CP 80, while at either CP
40 or CP 60, combined, it is 16.1. When creatures are allowed to move
horizontally, then the highest number of killed creatures at CP 80 is 13.86,
while at either CP 40 or CP 60, combined, it is 27.75.

As expected, the tree for the number of queued creatures (Fig. 3) is
opposite to, or a mirror of the tree for successful creatures. This is because:
(1) the number of successful, killed and queued creatures at the end of the
simulation adds up to the total number of generated creatures, fixed at
1511; (2) the numbers of killed creatures are over all small in comparison
with successful ones, i.e. the highest estimated number of killed creatures
is 27.75, while the lowest estimated number of successful creatures is 103.3.
Notice that the starting condition on the Fig. 1 is Horiz. Cre. 0, while in
Fig. 3 it is Horiz. Cre. 1. In Fig. 3, we notice that if creatures are not allowed
to move horizontally and fear is greater than zero, then the estimated number
of queued creature is 1,400, which is very high given that the total number
of creatures is 1511. However, if they are allowed to move horizontally, the
highest estimated number of queued creatures is 910.3, which is for fear
values greater than 0.25. Thus, it seems that if creatures are not allowed
to move horizontally, fearful creatures at the beginning of simulations may
prevent all other creatures from attempting to cross the highway. Figure 4
is the tree for number of successful creatures using tuning parameter 0.005.
The technique of pruning the tree is applied, as the smaller tuning parameter
allows for larger trees. The length of each branch is now a constant length
to make the display of the tree readable. This tree is more in-depth than the
previous tree for successful creatures in Fig. 1. It has additional partitions for
the value of fear, Car Prob. and also the value of desire. Without horizontal
creature movement, when there is a non-zero value of fear, more creatures
are able to cross the highway successfully with Car Prob. set to 0.1, i.e.
with the estimated number of 253.7 vs. 65.78. When creatures can move
horizontally, the additional partitions further support the idea that higher
values of fear decrease the number of successful creatures, while higher values
of desire increase this value.

4.3. Data with knowledge base transfer between repeats — Framework (II)

An additional factor to consider under this framework is the repetition
number. Considering the tuning parameter of 0.01, the following trees are
created and shown as Fig. 5 and Fig. 6.
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Diagram for Tree Model:
Successful Creatures with Tuning 0.01 and Rep as a Factor

horiz_cre=0
1

directioh=none

& 1233
fear=0.%,0.751

638.8
2472 632.4

Fig.5. Tree diagram for number of successful creatures with tuning parameter 0.01
under Framework (II). If the listed condition is true, the flow moves to the left side.
Reduction in RSS is proportional to branch length. The repetition number is also
considered as a factor.

Diagram for Tree Model:
Killed Creatures with Tuning 0.01 and Rep as a Factor

car_prob=03,050.7,0.9
T

horiz_jcre=0 horiz_jcre=0
cp380 cp380
cp=40.80 cp380 [ desite=0
I ! 6.351 desite=0
3566 5.988 6.574 1317
car_prot=0.7.0.9
5.385 Bd;fggtiombac ard forward 1078 2236
’ 1055 1423

Fig.6. Tree diagram for number of killed creatures with tuning parameter 0.01
under Framework (II). If the listed condition is true, the flow moves to the left
side. Reduction in RSS is proportional to branch length. The repetition number
is also considered as a factor.
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The tree for the number of queued creatures is excluded as the same mir-
rored nature occurs similar to the results under Framework (I). The lengths
of the branches are proportional to the amount of reduction of the residual
sum of squares. Contrasting with the equivalent tree model under Frame-
work (I), i.e. with Fig. 1, Fig. 5 illustrates the dominance of the Horiz. Cre.
parameter for the number of successful creatures due to the lack of addi-
tional partitioning when Horiz. Cre. equals 1. In Fig. 5, the corresponding
estimated number of successful creatures is 1233 and it is higher than all
the estimated numbers in Fig. 1. The observed higher numbers in Fig. 5 are
a consequence of the additional KB transferring/learning occurring under
Framework (II) not present under Framework (I). This phenomenon and
the described dominant effect of the Horiz. Cre. parameter value 1 was also
observed in our previous work. In the tree for the killed creatures (Fig. 6),
similar interpretations from the tree for killed creatures for the data un-
der Framework (I) can be made. The initial split however, is on Car Prob.
rather than Horiz. Cre.

Figure 7 is the tree for number of successful creatures using tuning pa-
rameter 0.005. It is an equivalent of Fig. 4. As before, the larger tree emerges
when the smaller value of the tuning parameter is considered and we make
the display of the tree more readable by setting the length of each branch
to a constant length. This tree is more in-depth than the previous tree for
successful creatures in Fig. 4. It has additional partitions for the value of
fear, Car Prob. and KB Transf. Despite creating a larger tree, there are
still no additional partitions for when Horiz. Cre. equals 1 (at least after
being pruned), as in Fig. 5. This tree model also considers the repetition
number to be influential to the number of successful creatures in situations
with Horiz. Cre. equal to 0, with KB Transf. equal to “none”, and with one
of the higher fear values (0.5, 0.75, or 1). Under these scenarios, if the repe-
tition value is in the higher half of the values (greater than 15), the number
of estimated successful creatures is greatly increased: comparing 343.4 to
150.9. This is consistent with the scheme of Framework (II) and confirms
that the higher value repetitions will have a more developed knowledge base
leading to a larger number of successful creatures.

5. Conclusions and future work

The presented results show that a more developed KB or allowing the
creatures to move horizontally along the highway improves the number of
creatures that successfully cross. Higher values of fear will decrease the num-
ber of killed creatures at the cost of also decreasing the number of successful
creatures. The value of desire is less influential but has an opposite effect
when compared to the value of fear, 7.e. it increases the numbers of success-
ful and killed creatures. The performed analysis quantifies and confirms our
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qualitative observations presented in previous works. We plan to continue
our analyses by exploring the effects of other model parameters and different
decision making formulas on creatures success rate of crossing the highway.
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